От чего зависит восстановительная активность металлов. Электрохимический ряд напряжений металлов. Вытеснение металлов из солей другими металлами. Примеры решения задач

Восстановительные свойства - это главные химические свойства, характерные для всех металлов. Они проявляются во взаимодействии с самыми разнообразными окислителями, в том числе с окислителями из окружающей среды. В общем виде взаимодействие металла с окислителями можно выразить схемой:

Ме + Окислитель " Me (+Х),

Где (+Х) - это положительная степень окисления Ме.

Примеры окисления металлов.

Fe + O 2 → Fe(+3) 4Fe + 3O 2 = 2 Fe 2 O 3

Ti + I 2 → Ti(+4) Ti + 2I 2 = TiI 4

Zn + H + → Zn(+2) Zn + 2H + = Zn 2+ + H 2

  • Ряд активности металлов

    Восстановительные свойства металлов отличаются друг от друга. В качестве количественной характеристики восстановительных свойств металлов используют электродные потенциалы Е.

    Чем активнее металл, тем отрицательнее его стандартный электродный потенциал Е о.

    Металлы, расположенные в ряд по мере убывания окислительной активности, образуют ряд активности.

    Ряд активности металлов

    Me Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H 2 Cu Ag Au
    Me z+ Li + K + Ca 2+ Na + Mg 2+ Al 3+ Mn 2+ Zn 2+ Cr 3+ Fe 2+ Ni 2+ Sn 2+ Pb 2+ H + Cu 2+ Ag + Au 3+
    E o ,B -3,0 -2,9 -2,87 -2,71 -2,36 -1,66 -1,18 -0,76 -0,74 -0,44 -0,25 -0,14 -0,13 0 +0,34 +0,80 +1,50
    Металл, с более отрицательным значением Ео, способен восстановить катион металла с более положительным электродным потенциалом.

    Восстановление металла из раствора его соли с другим металлом с более высокой восстановительной активностью называется цементацией . Цементацию используют в металлургических технологиях.

    В частности, Cd получают, восстанавливая его из раствора его соли цинком.

    Zn + Cd 2+ = Cd + Zn 2+

  • 3.3. 1. Взаимодействие металлов с кислородом

    Кислород - это сильный окислитель. Он может окислить подавляющее большинство металлов, кроме Au и Pt . Металлы, находящиеся на воздухе, контактируют с кислородом, поэтому при изучении химии металлов всегда обращают внимание на особенности взаимодействия металла с кислородом.

    Всем известно, что железо во влажном воздухе покрывается ржавчиной - гидратировааным оксидом железа. Но многие металлы в компактном состоянии при не слишком высокой температуре проявляют устойчивость к окислению, так как образуют на своей поверхности тонкие защитные пленки. Эти пленки из продуктов окисления не позволяют окислителю контактировать с металлом. Явление образования на поверхности металла защитных слоев, препятствующих окислению металла, называется - пассивацией металла.

    Повышение температуры способствует окислению металлов кислородом . Активность металлов повышается в мелкораздробленном состоянии. Большинство металлов в виде порошка сгорает в кислороде.

  • s-металлы

    Наибольшую восстановительную активность проявляют s -металлы. Металлы Na, K, Rb Cs способны воспламеняться на воздухе, и их хранят в запаянных сосудах или под слоем керосина. Be и Mg при невысоких температурах на воздухе пассивируются. Но при поджигании лента из Mg сгорает с ослепительным пламенем.

    Металлы II А-подгруппы и Li при взаимодействии с кислородом образуют оксиды .

    2Ca + O 2 = 2CaO

    4 Li + O 2 = 2Li 2 O

    Щелочные металлы, кроме Li , при взаимодействии с кислородом образуют не оксиды, а пероксиды Me 2 O 2 и надпероксиды MeO 2 .

    2Na + O 2 = Na 2 O 2

    K + O 2 = KO 2

  • р-металлы

    Металлы, принадлежащие p -блоку на воздухе пассивируются.

    При горении в кислороде

    • металлы IIIА-подгруппы образуют оксиды типа Ме 2 О 3 ,
    • Sn окисляется до SnO 2 , а Pb - до PbO
    • Bi переходит в Bi 2 O 3 .
  • d-металлы

    Все d -металлы 4 периода окисляются кислородом . Легче всего окисляются Sc, Mn , Fe. Особенно устойчивы к коррозии Ti, V, Cr.

    При сгорании в кислороде из всех d

    При сгорании в кислороде из всех d -элементов 4 периода только скандий, титан и ванадий образуют оксиды, в которых Ме находится в высшей степени окисления, равной № группы. Остальные d-металлы 4 периода при сгорании в кислороде образуют оксиды, в которых Ме находится в промежуточных, но устойчивых степенях окисления.

    Типы оксидов, образуемых d-металлами 4 периода при горении в кислороде:

    • МеО образуют Zn, Cu, Ni, Co. (при Т>1000оС Cu образует Cu 2 O),
    • Ме 2 О 3 , образуют Cr, Fe и Sc,
    • МеО 2 - Mn, и Ti,
    • V образует высший оксид -V 2 O 5 .
    d -металлы 5 и 6 периодов, кроме Y, La, более всех других металлов устойчивы к окислению. Не реагируют с кислородом Au, Pt.

    При сгорании в кислороде d -металлов 5и 6 периодов, как правило, образуют высшие оксиды , исключение составляют металлы Ag, Pd, Rh, Ru.

    Типы оксидов, образуемых d-металлами 5и 6 периодов при горении в кислороде:

    • Ме 2 О 3 - образуют Y, La; Rh;
    • МеО 2 - Zr, Hf; Ir:
    • Me 2 O 5 - Nb, Ta;
    • MeO 3 - Mo, W
    • Me 2 O 7 - Tc, Re
    • МеО 4 - Os
    • MeO - Cd, Hg, Pd;
    • Me 2 O - Ag;
  • Взаимодействие металлов с кислотами

    В растворах кислот катион водорода является окислителем . Катионом Н + могут быть окислены металлы, стоящие в ряду активности до водорода , т.е. имеющие отрицательные электродные потенциалы.

    Многие металлы, окисляясь, в кислых водных растворах многие переходят в катионы Me z + .

    Анионы ряда кислот способны проявлять окислительные свойства, более сильные, чем Н + . К таким окислителям относятся анионы и самых распространенных кислот H 2 SO 4 и HNO 3 .

    Анионы NO 3 - проявляют окислительные свойства при любой их концентрации в растворе, но продукты восстановления зависят от концентрации кислоты и природы окисляемого металла.

    Анионы SO 4 2- проявляют окислительные свойства лишь в концентрированной H 2 SO 4 .

    Продукты восстановления окислителей: H + , NO 3 - , SO 4 2 -

    2Н + + 2е - = Н 2

    SO 4 2- из концентрированной H 2 SO 4 SO 4 2- + 2e - + 4 H + = SO 2 + 2 H 2 O

    (возможно также образование S, H 2 S)

    NO 3 - из концентрированной HNO 3 NO 3 - + e - + 2H + = NO 2 + H 2 O
    NO 3 - из разбавленной HNO 3 NO 3 - + 3e - + 4H + = NO + 2H 2 O

    (возможно также образование N 2 O, N 2 , NH 4 +)

    Примеры реакций взаимодействия металлов с кислотами

    Zn + H 2 SO 4 (разб.) " ZnSO 4 + H 2

    8Al + 15H 2 SO 4 (к.) " 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

    3Ni + 8HNO 3 (разб.) " 3Ni(NO 3) 2 + 2NO + 4H 2 O

    Cu + 4HNO 3 (к.) " Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • Продукты окисления металлов в кислых растворах

    Щелочные металлы образуют катион типа Ме + , s-металлы второй группы образуют катионы Ме 2+ .

    Металлы р-блока при растворении в кислотах образуют катионы, указанные в таблице.

    Металлы Pb и Bi растворяют только в азотной кислоте.

    Me Al Ga In Tl Sn Pb Bi
    Mez+ Al 3+ Ga 3+ In 3+ Tl + Sn 2+ Pb 2+ Bi 3+
    Eo,B -1,68 -0,55 -0,34 -0,34 -0,14 -0,13 +0,317

    Все d-металлы 4 периода, кроме Cu, могут быть окислены ионами Н + в кислых растворах.

    Типы катионов, образуемых d-металлами 4 периода:

    • Ме 2+ (образуют d-металлы начиная от Mn до Cu)
    • Ме 3+ (образуют Sc, Ti , V , Cr и Fe в азотной кислоте).
    • Ti и V образуют также катионы МеО 2+
    d -элементы 5 и 6 периодов более устойчивы к окислению, чем 4 d - металлы.

    В кислых растворах Н + может окислить: Y, La, Сd.

    В HNO 3 могут растворяться: Cd, Hg, Ag. В горячей HNO 3 растворяются Pd, Tc, Re.

    В горячей H 2 SO 4 растворяются: Ti, Zr, V, Nb, Tc, Re, Rh, Ag, Hg.

    Металлы: Ti, Zr, Hf, Nb, Ta, Mo, W обычно растворяют в смеси HNO 3 + HF.

    В царской водке (смеси HNO 3 + HCl) можно растворить Zr, Hf, Mo, Tc, Rh, Ir, Pt, Au и Os с трудом). Причиной растворения металлов в царской водке или в смеси HNO 3 + HF является образование комплексных соединений.

    Пример. Растворение золота в царской водке становится возможным из-за образования комплекса -

    Au + HNO 3 + 4HCl = H + NO + 2H 2 O

  • Взаимодействие металлов с водой

    Окислительные свойства воды обусловлены Н(+1).

    2Н 2 О + 2е - " Н 2 + 2ОН -

    Так как концентрация Н + в воде мала, окислительные свойства ее невысоки. В воде способны растворяться металлы с Е < - 0,413 B. Число металлов, удовлетворяющих этому условию, значительно больше, чем число металлов, реально растворяющихся в воде. Причиной этого является образование на поверхности большинства металлов плотного слоя оксида, нерастворимого в воде. Если оксиды и гидроксиды металла растворимы в воде, то этого препятствия нет, поэтому щелочные и щелочноземельные металлы энергично растворяются в воде. Все s -металлы, кроме Be и Mg легко растворяются в воде.

    2 Na + 2 HOH = H 2 + 2 OH -

    Na энергично взаимодействует с водой с выделением тепла. Выделяющийся Н 2 может воспламениться.

    2H 2 +O 2 =2H 2 O

    Mg растворяется только в кипящей воде, Ве защищен от окисления инертным нерастворимым оксидом

    Металлы р-блока - менее сильные восстановители, чем s .

    Среди р-металлов восстановительная активность выше у металлов IIIА-подгруппы, Sn и Pb - слабые восстановители, Bi имеет Ео > 0 .

    р-металлы при обычных условиях в воде не растворяются . При растворении защитного оксида с поверхности в щелочных растворах водой окисляются Al, Ga и Sn.

    Среди d-металлов водой окисляются при нагревании Sc и Mn, La, Y. Железо реагирует с водяным паром.

  • Взаимодействие металлов с растворами щелочей

    В щелочных растворах окислителем выступает вода .

    2Н 2 О + 2е - = Н 2 + 2ОН - Ео = - 0,826 B (рН =14)

    Окислительные свойства воды с ростом рН понижаются, из-за уменьшения концентрации Н + . Тем не менее, некоторые металлы, не растворяющиеся в воде, растворяются в растворах щелочей, например, Al, Zn и некоторые другие. Главная причина растворения таких металлов в щелочных растворах заключается в том, что оксиды и гидроксиды этих металлов проявляют амфотерность, растворяются в щелочи, устраняя барьер между окислителем и восстановителем.

    Пример. Растворение Al в растворе NaOH.

    2Al + 3H 2 O +2NaOH + 3H 2 O = 2Na + 3H 2

  • Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

    Положение в таблице Менделеева

    Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

    Рис. 1. Активные металлы в таблице Менделеева.

    Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

    Наиболее активными считаются щелочные металлы:

    • литий;
    • натрий;
    • калий;
    • рубидий;
    • цезий;
    • франций.

    К щелочноземельным металлам относятся:

    • бериллий;
    • магний;
    • кальций;
    • стронций;
    • барий;
    • радий.

    Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

    Рис. 2. Электрохимический ряд напряжений металлов.

    К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

    Свойства

    Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

    Основные химические свойства металлов представлены в таблице.

    Реакция

    Уравнение

    Исключение

    Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

    K + O 2 → KO 2

    Литий реагирует с кислородом только при высокой температуре

    Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

    2Ca + O 2 → 2CaO

    Реагируют с простыми веществами, образуя соли

    Ca + Br 2 → CaBr 2 ;
    - 2Al + 3S → Al 2 S 3

    Алюминий не вступает в реакцию с водородом

    Бурно реагируют с водой, образуя щёлочи и водород


    - Ca + 2H 2 O → Ca(OH) 2 + H 2

    Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

    Реагируют с кислотами, образуя соли

    Ca + 2HCl → CaCl 2 + H 2 ;

    2K + 2HMnO 4 → 2KMnO 4 + H 2

    Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

    2Na + CuCl 2 + 2H 2 O:

    2Na + 2H 2 O → 2NaOH + H 2 ;
    - 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

    Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

    Рис. 3. Минералы и чистые металлы.

    Что мы узнали?

    К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

    Разность потенциалов «вещество электрода – раствор» как раз и служит количествен­ной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характери­ стикой ОВ способности иона и соответствующего ему вещества.

    Такую разность потенциалов называют электродным потенциалом .

    Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенци­ ал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с кон­ центрацией ионов Н + 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .

    Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

    H 2 2H .

    Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

    H Н + + е.

    Суммарный процесс выражается уравнением:

    Н 2 2Н + + 2е.

    Платина не принимает участия в окислительно — восстанов ительном процессе, а является лишь носителем атомарного водорода.

    Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный элек­тродный потенциал металла, обозначаемый обычно как Е 0 .

    По отношению к системе Н 2 /2Н + некоторые вещества будут вести себя как окислители, другие - как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к от­даче или захвату электронов.

    Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.

    Если расположить металлы в порядке воз­растания их стандартных электродных потенциалов, то образует­ся так называемый электрохимический ряд напряжений метал­лов :

    Li , Rb , К, Ва, Sr , Са, N а, М g , А l , М n , Zn , С r , F е, С d , Со, N i , Sn , Р b , Н, Sb , В i , С u , Hg , А g , Р d , Р t , А u .

    Ряд напряжений характеризует химические свойства металлов.

    1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

    2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции вза­имодействия металлов с водой.

    3. Все металлы, имеющие отрицательный стандартный элек­тродный потенциал, т.е. находящиеся в ряду напряжений метал­лов левее водорода, способны вытеснять его из растворов кислот.

    Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией про­цесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

    Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

    Так, все полуреакции окисления галогенид-ионов до свободных галогенов

    2 Cl — — 2 e = С l 2 Е 0 = -1,36 В (1)

    2 Br — -2е = В r 2 E 0 = -1,07 В (2)

    2I — -2 е = I 2 E 0 = -0,54 В (3)

    могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца ( IV ) (Е 0 = 1,46 В) или перманганата калия (Е 0 = 1,52 В). При использовании дихромата калия ( E 0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты ( E 0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).

    Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

    Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

    Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

    Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

    Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

    Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

    Взаимодействие с простыми веществами

      С кислородом большинство металлов образует оксиды – амфотерные и основные:

    4Li + O 2 = 2Li 2 O,

    4Al + 3O 2 = 2Al 2 O 3 .

    Щелочные металлы, за исключением лития, образуют пероксиды:

    2Na + O 2 = Na 2 O 2 .

      С галогенами металлы образуют соли галогеноводородных кислот, например,

    Cu + Cl 2 = CuCl 2 .

      С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

    2Na + H 2 = 2NaH.

      С серой металлы образуют сульфиды – соли сероводородной кислоты:

      С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

    3Mg + N 2 = Mg 3 N 2 .

      С углеродом образуются карбиды:

    4Al + 3C = Al 3 C 4 .

      С фосфором – фосфиды:

    3Ca + 2P = Ca 3 P 2 .

      Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

    2Na + Sb = Na 2 Sb,

    3Cu + Au = Cu 3 Au.

      Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

    Сплавы

    Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

    Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

    Возможны следующие типы сплавов:

    Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

    Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

    Металлы в химических реакциях всегда восстановители. Восстановительную активность металла отображает его положение в электрохимическом ряду напряжений.

    На основании ряда можно сделать следующие выводы:

    1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.

    2. Каждый металл способен вытеснять из солей в растворе те металлы, которые стоят правее

    2Fe + 3CuSO 4 → 3Cu + Fe 2 (SO 4) 3

    3. Металлы, находящиеся в ряду напряжений левее водорода способны вытеснять его из кислот.

    Zn + 2HCl → ZnCl 2 + H 2

    4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные) в любых водных растворах прежде сего реагируют с водой.

    Восстановительная способность металла, определённая по электрохимическому ряду не всегда соответствует его положению в периодической системе т.к в ряду напряжений учитывается не только радиус атома, но и энергия отрыва электронов.

    Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

    Альдегиды – это органические соединения, в состав молекулы которых входит карбонильная группа, соединённая с водородом и углеводородным радикалом.

    Метаналь (муравьиный альдегид)

    Физические свойства

    Метаналь – газообразное вещество, водный раствор – формалинь

    Химические свойства


    Реактивом на альдегиды является Cu(OH) 2

    Применение

    Наибольшее применение имеют метаналь и этаналь. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс. Пластмассы изготовлены для из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирту получают различные лаки. При взаимодействии метаналя с карбамидом CO(NH 2) 2 получают карбидную смолу, а из нее – аминопласты. Из этих пластмасс изготавливают микропористые материалы для нужд электротехники.Метаналь идёт так же на производство некоторых лекарственных веществ и красителей. Широко применяется водный раствор, содержащий в массовых долях 40% метаналя. Он называетсяформалином. Его использование основано на свойстве свёртывать белок.



    Получение

    Альдегиды получают окислением алканов и спиртов. Этаналь получают гидротациейэтина и окислением этена.

    Билет №12

    Высшие оксиды химических элементов третьего периода. Закономерности в измерении их свойств в связи с положением химических элементов в периодической системе. Характерные химические свойства оксидов: основных, амфотерных, кислотных.

    Оксиды – это сложные вещества, состоящие из двух химических элементов, один из которых является кислород со степенью окисления «-2»

    К оксидам третьего периода относятся:
    Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 .

    С увеличением степени окисления элементов, увеличиваются кислотные свойства оксидов.

    Na 2 O, MgO – основные оксиды

    Al 2 O 3 – амфотерный оксид

    SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 – кислотные оксиды.

    Основные оксиды реагируют с кислотами с образованием соли и воды.

    MgO + 2CH 3 COOH → (CH 3 COO) 2 Hg + H 2 O

    Оксиды щелочных и щелочноземельных металлов реагируют с водой с образованием щёлочи.

    Na 2 O + HOH → 2NaOH

    Основные оксиды реагируют с кислотными оксидами с образованием соли.
    Na 2 O + SO 2 → Na 2 SO 3
    Кислотные оксиды реагируют со щелочами с образованием соли и воды

    2NaOH + SO 3 → Na 2 SO 4 + H 2 O

    Реагирует с водой, с образованием кислоты

    SO 3 + H 2 O → H 2 SO 4

    Амфотерные оксиды реагируют с кислотами и щелочами

    Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

    Со щёлочью

    Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O

    Жиры, их свойства и состав. Жиры в природе, превращение жиров в организме. Продукты технической переработки жиров, понятие о синтетических моющих средствах. Защита природы от загрязнения СМС.

    Жиры – это сложные эфиры глицерина и карбоновых кислот.

    Общая формула жиров:

    Твёрдые жиры образованы преимущественно высщими предельными карбоновыми кислотами – стеариновой C 17 H 35 COOH, пальмитиновой C 15 H 31 COOH и некоторыми другими. Жидкие жиры образованы главным образом высшими непредельными карбоновыми кислотами – олеиновойC 17 H 33 COOH , ленолевойC 17 H 31 COOH

    Жиры наряду с углеводородами и белками входят в состав организмов животных и растений. Они являются важной составной частью пищи человека и животных. При окислении жиров в организме выделяется энергия. Когда в органы пищеварения поступают жиры, то под влиянием ферментов они гидролизуются на глицерин и соответствующие кислоты.

    Продукты гидролиза всасываются ворсинками кишечника, а затем синтезируется жир, но уже свойственный организм. Потоком крови жиры переносятся в другие органы и ткани организма, где накапливаются или снова гидролизуются и постепенно окисляются до оксида углерода (IV) и воды.

    Физические свойства.

    Животные жиры в большинстве случаев твёрдые вещества, но встречаются и жидкие (рыбий жир). Растительные жиры чаше всего жидкие вещества – масла; известны и твёрдые растительные жиры – кокосовое масло.

    Химические свойства.

    Жиры в животных организмах в присутствии ферментов гидролизуются. Кроме реакций с водой, жиры взаимодействуют со щелочами.

    В состав растительных масел входят сложные эфиры непредельных карбоновых кислот, то их можно подвергнуть гидрированию. Они превращаются в предельные соединения
    Пример: Из растительного масла в промышленности получают маргарин.

    Применение.
    Жиры в основном применяют в качестве пищевого продукта. Раньше жиры использовали для получения мыла
    Синтетические моющие средства.

    Синтетические моющие средства оказывают вредное действие на окружающую среду, т.к. они устойчивы и с трудом подвергаются разрушению.



    mob_info