Дебит газовой скважины. Современные проблемы науки и образования. Статический и динамический уровни воды

Дебит скважины - это основной параметр скважины , показывающий, сколько воды можно из нее получить за определенный промежуток времени. Измеряется данная величина в м 3 /день, м 3 /час, м 3 /мин. Следовательно, чем больше дебит скважины, тем выше ее производительность.

Определять дебит скважины нужно в первую очередь для того, чтобы знать на какой объем жидкости вы можете рассчитывать. Например, хватит ли воды для бесперебойного использования в ванной комнате, в огороде для полива и т.д. Кроме того, данный параметр отлично помогает в выборе насоса для подачи воды. Так, чем он больше, тем более производительный насос можно использовать. Если же покупать насос не обращая внимания на дебит скважины, то может случиться так, что он будет высасывать воду из скважины быстрей, чем она будет наполняться.

Статический и динамический уровни воды

Для того, чтобы рассчитать дебет скважины необходимо знать статический и динамический уровни воды. Первая величина обозначает уровень воды в спокойном состоянии , т.е. в тот момент, когда откачка воды еще не производилась. Вторая величина определяет устоявшийся уровень воды во время работы насоса , т.е. когда скорость ее выкачивания равна скорости наполнения скважины (вода перестает убывать). Другими словами, данный дебит напрямую зависит от производительности насоса, которая указывается в его паспорте.

Оба эти показателя измеряются от поверхности воды до поверхности земли. Единица измерения при этом чаще всего выбирается метр. Так, к примеру, уровень воды был зафиксирован на отметке 2 м, а после включения насоса он установился на отметке 3 м, следовательно, статический уровень воды равен 2 м, а динамический - 3 м.

Также здесь хотелось бы отметить, что если разница между двумя этими величинами не значительная (например, 0,5-1 м), то можно сказать, что дебет скважины большой и скорее всего выше производительности насоса.

Расчет дебита скважины

Как же определяется дебит скважины? Для этого требуется высокопроизводительный насос и мерная емкость для выкаченной воды, желательно, как можно больших размеров. Сам же расчет лучше рассматривать на конкретном примере.

Исходные данные 1:

  • Глубина скважины - 10 м .
  • Начало уровня фильтрационной зоны (зона забора воды с водоносного слоя) - 8 м .
  • Статический уровень воды - 6 м .
  • Высота столба воды в трубе - 10-6 = .
  • Динамический уровень воды - 8,5 м . Данная величина отражает оставшееся количество воды в скважине после откачки из нее 3 м 3 воды, при затраченном времени на это 1 час. Другими словами, 8,5 м - это динамический уровень воды при дебете 3 м 3 /час, который снизился на 2,5 м.

Расчет 1:

Дебит скважины рассчитывается по формуле:

D ск = (U/(H дин -Н ст))·H в = (3/(8,5-6))*4 = 4,8 м 3 /ч,

Вывод: дебет скважины равен 4,8 м 3 /ч .

Представленный расчет очень часто применяется бурильщиками. Но он несет в себе очень большую погрешность. Так как этот расчет предполагает, что динамический уровень воды будет увеличиваться прямопропорционально скорости выкачивания воды. Например, при увеличении откачки воды до 4 м 3 /ч, согласно ему, уровень воды в трубе падает на 5 м, а это неверно. Поэтому есть более точная методика с включением в расчет параметров второго водозабора для определения удельного дебита.

Что нужно при этом делать? Необходимо после первого водозабора и снятия данных (предыдущий вариант), дать воде устояться и вернуться к своему статическому уровню. После этого произвести выкачивание воды с другой скоростью, например, 4 м 3 /час.

Исходные данные 2:

  • Параметры скважины те же.
  • Динамический уровень воды - 9,5 м . При интенсивности водозабора 4 м 3 /ч.

Расчет 2:

Удельный дебит скважины рассчитывается по формуле:

D у = (U 2 -U 1)/(h 2 -h 1) = (4-3)/(3,5-2,5) = 1 м 3 /ч,

В итоге получается, что повышение динамического уровня воды на 1 м способствует приросту дебита на 1 м 3 /ч. Но это только при условии, что насос будет находиться не ниже начала фильтрационной зоны.

Реальный дебит здесь вычисляется по формуле:

D ск = (Н ф -Н ст)·D у = (8-6)·1 = 2 м 3 /ч,

  • H ф = 8 м - начало уровня фильтрационной зоны.

Вывод: дебет скважины равен 2 м 3 /ч .

После сравнения видно, что величины дебита скважины в зависимости от методики расчета отличаются друг от друга более, чем в 2 раза. Но второй расчет то же не точный. Дебит скважины, вычисленный через удельный дебит, лишь приближен к реальном значению.

Способы увеличения дебита скважины

В заключении хотелось бы упомянуть о том, как можно увеличить дебит скважины. Способа по сути дела два. Первый способ - это прочистить эксплуатационную трубу и фильтр в скважине. Второй заключается в том, чтобы проверить работоспособность насоса. Вдруг именно по его причине снизилось количество добываемой воды.

Работы по созданию скважины на придомовом участке предусматривают бурение, укрепление оголовки. По завершению, фирма, которая выполняла заказ, составляет документ на скважину. В паспорте указывают параметры сооружения, характеристики, измерения и расчет скважины.

Процедура проведения расчета скважины

Работники компании составляют протокол осмотра и акт передачи в пользование.

Процедуры являются обязательными, поскольку дают возможность получить документальное подтверждение исправности конструкции, возможности введения ее в эксплуатацию.

В документацию вносят геологические параметры и технологические характеристики:


Для того, чтобы проверить правильность подсчета, запускают пробную качку воды на большой мощности насоса. Это позволяет улучшить показатели динамики

На практике для точности расчета пользуются второй формулой. После получения значений дебита, определяют средний показатель, позволяющий точно определить рост продуктивности при увеличении динамики на 1 м.

Формула расчета:

D уд = D2 – D1/H2 – H1

  • Dуд – дебит удельный;
  • D1, H1 — показатели первого испытания;
  • D2, H2 — показатели второго испытания.

Лишь при помощи проведения исчислений подтверждается правильность выполнения исследований и бурения водозабора.

Расчетные характеристики на практике

Знакомство с методами расчета водозаборной скважины провоцирует возникновение вопроса – зачем нужны эти знания обычному пользователю водозабора? Здесь важно понимать, что водоотдача – единый способ оценивания работоспособности скважины, для того чтобы удовлетворить потребность жильцов в воде до подписания акта приема-передачи.

Чтобы в дальнейшем не возникало проблем, действуйте следующим образом:

  1. Расчет проводится с учетом количества жильцов дома. Средний показатель потребления воды – 200 л на одного человека. Сюда прибавляют расходы на хозяйственные нужды и техническое использование. При расчете на семью из 4-х человек получаем наибольшее потребление воды 2,3 кубометра/час.
  2. В процессе составления договора в проекте берется значение продуктивности водозабора на уровне не меньше 2,5 — 3 м 3 /ч.
  3. После завершения работ и расчета уровня скважины, производят откачку воды, замер динамики и определение водоотдачи при наибольшем расходе домашнего насоса.

Проблемы могут возникнуть на уровне расчета дебита скважины на воду в процессе контрольной выкачки насосом, принадлежащим компании исполнителю.

Моменты, которые определяют скорость наполнения скважины водой:

  1. Объем слоя воды;
  2. Быстрота его уменьшения;
  3. Глубина залегания грунтовых вод и изменения уровня в зависимости от сезона.

Скважины с продуктивностью забора воды менее 20 м 3 /сут., считаются малопродуктивными.

Причины низких показателей дебита:

  • особенности гидрогеологической ситуации местности;
  • изменения в зависимости от времени года;
  • замусоривание фильтров;
  • засоры в трубах, которые подают воду наверх либо их дефлорация;
  • естественный износ насоса.

Если после ввода скважины в работу обнаружены проблемы, это говорит о том, что на стадии расчета параметров были ошибки. Поэтому этот этап – один из самых важных, который нельзя упускать из виду.


Для того чтобы увеличить продуктивность работы водозабора, увеличивают глубину скважины с целью вскрытия дополнительного слоя воды.

Также, используют методы выкачки воды опытным путем, применяют химическое и механическое воздействия на водные слои, либо переносят скважину в другое место.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ


высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Особенности разработки месторождений нефти горизонтальными скважинами

Методические указания

для самостоятельных работ по дисциплине «Особенности разработки месторождений горизонтальными скважинами» для магистров, обучающихся по специальности 131000.68 «Нефтегазовое дело»

Составители: С. И. Грачев, А.С. Самойлов, И.Б. Кушнарев


Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Институт геологии и нефтегазодобычи

Кафедра «Разработка и эксплуатация нефтяных и газовых месторождений»

Методические указания

По дисциплине «Особенности разработки месторождений нефти горизонтальными скважинами»

для практических, лабораторных занятий и самостоятельных работ для бакалавров направления 131000.62 «Нефтегазовое дело» для всех форм обучения



Тюмень 2013 г.


Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Методические указания предназначены бакалаврам направления 131000.62 «Нефтегазовое дело» для всех форм обучения. В методических указаниях приведены основные задачи с примерами решения по дисциплине «Особенности разработки месторождений нефти горизонтальными скважинами».

Составители: доцент, к.т.н. Самойлов А.С.

доцент, к.т.н. Фоминых О.В.

лаборант Невкин А.А.

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет» 2013 г.


ВВЕДЕНИЕ. 2

Тема 1. Расчет дебитов скважин с горизонтальным окончанием и сопоставление результатов. 7

Тема 2. Расчет дебита горизонтальной скважины и наклонно - направленной с трещиной ГРП по приведенным формулам, сопоставление результатов. 2

Тема 3. Расчет дебита многоствольной скважины. 17

Тема 4. Расчет оптимальной сетки горизонтальных скважин и сравнительная эффективность их работы с вертикальными. 21

Тема 5. Интерпретация результатов гидродинамических исследований скважин с горизонтальным окончанием на установившихся режимах (по методике Евченко В.С.). 2

Тема 6. Дебит горизонтальной скважины с трещинами ГРП, расположенной в анизотропном, полосообразном пласте. 34

Тема 7. Расчёт предельной безводной депрессии скважины с горизонтальным окончанием………………………………………………………………………30

Тема 8. Моделирование неустановившегося движения жидкости к горизонтальной скважине по двухзонной схеме………………………………45


ВВЕДЕНИЕ

При масштабном внедрении в начале 2000-х и в течение последующего десятилетия в систему разработки месторождений Западной Сибири горизонтальных скважин (ГС) и боковых горизонтальных стволов (БГС) достигалась форсированная выработка запасов нефти при быстрой окупаемости вложений без строительства новых скважин. Внедрение производилось в оперативном порядке, не всегда согласованно с принятыми проектными решениями, либо путем трансформации существующей системы разработки. Однако, без системного обоснования технологии горизонтального вскрытия и эксплуатации объектов, проектные значения коэффициента извлечения нефти (КИН) не достигаются.

В последние годы технологии горизонтального вскрытия уделяется много большее внимание при проектировании системы разработки, в некоторых компаниях обоснование строительства каждого ГС выполняется в виде мини-проекта. На что повлиял и мировой финансовый кризис, когда в целях оптимизации производства погрешность и доля неопределенности сводились к минимуму. К технологии горизонтального вскрытия применили новые подходы о чем свидетельствуют результаты эксплуатации, построенных ГС и БГС с 2009 г. (в ОАО «Сургутнефтегаз» построено более 350 скв., ОАО «Лукойл» более 200 скв., в ТНК-ВР более 100 скв., в ОАО «НГК «Славнефть» более 100 скв., в ОАО «Газпром нефть» более 70 скв., в ОАО «НК «Роснефть» более 50 скв., в ОАО НК «РуссНефть» более 20 скв.).

Известно, что не достаточно определить только основные параметры применения ГС: длину, профиль, расположение ствола относительно кровли и подошвы, предельные технологические режимы эксплуатации. Необходимо учитывать размещение и параметры сетки скважин, схемы вскрытия пластов и регулирование режимов их работы. Необходимо создание принципиально новых методов мониторинга и управления выработкой запасов нефти особенно для сложнопостроенных залежей, которые будут основаны на достоверном изучении геологического строения посредством исследования горизонтальных стволов, зависимости дебита нефти от неоднородности геологического строения и гидравлических сопротивлений по длине, создании равномерности выработки запасов нефти по всему объему коллектора дренируемого ГС, высокоточном определение зоны дренирования, возможности проведения и прогнозирования эффективности способов повышении нефтеотдачи пластов, определения главных напряжений пород, от учета которых напрямую зависит эффективность системы заводнения и механические методы воздействия на пласт (гидроразрыв пласта).

Целью настоящего методического указания является обеспечение студентов знаниями, которыми пользуется современная наука и производство при управлении продуктивностью скважин.

В методических указаниях для каждой задачи по темам представлен алгоритм расчета и приведен пример решения типовой задачи, что существенно помогает успешному выполнению задания. Однако, его применение возможно лишь после изучения теоретических основ.

Все расчеты следует проводить в рамках международной системы единиц (СИ).

Теоретические основы дисциплины хорошо изложены в учебниках, ссылки которых приведены.


Тема 1. Расчет дебитов скважин с горизонтальным окончанием и сопоставление результатов

Для определения дебита нефти в одиночной горизонтальной скважине в однородно анизотропном пласте используется формула S.D. Joshi:

где, Q г – дебит нефти горизонтальной скважины м 3 /сек; k h – горизонтальная проницаемость пласта м 2 ; h – нефтенасыщенная толщина, м; ∆P – депрессия на пласт, Па; μ н – вязкость нефти Па·с; B 0 – объемный коэффициент нефти; L – длина горизонтального участка скважины, м; r c – радиус ствола скважины в продуктивном пласте, м; – большая полуось эллипса дренирования (рис. 1.1), м:

, (1.2)

где R k – радиус контура питания, м; – параметр анизотропии проницаемости, определяемый по формуле:

k v – вертикальная проницаемость пласта, м 2 . В расчетах принята вертикальная проницаемость, равная 0,3·k h , осредненный параметр терригенных отложений Западной Сибири, также для достоверного расчета должно выполняться условие ‑ , .

Рисунок 1.1 - Схема притока к горизонтальному стволу в круговом пласте

Борисов Ю.Л. при описании эллиптического потока предложил другое условие для определения R k . В качестве данной величины здесь используется основной радиус эллипса (рис. 1.2), представляющий собой среднюю величину между полуосями:

(1.4)

Рисунок 1.2 - Схема притока к горизонтальному стволу в круговом пласте

Общая формула для притока к ГС, полученная Борисовым Ю.П., имеет следующий вид:

, (1.5)

где J – фильтрационное сопротивление, определяемое по формуле:

. (1.6)

Giger предлагает использовать формулу (1.8), где за фильтрационное сопротивление J принимать выражение

(1.7)

Общая формула для притока к ГС, полученная Giger аналогична уравнениям предыдущих авторов:

. (1.8)

Все условные обозначения параметров аналогичны представленным для уравнения Joshi S.D..

Задача 1.1. Для геолого-физических условий пласта ПК 20 Ярайнерского месторождения, представленных в таблице 1.1 рассчитать дебит скважины с горизонтальным окончанием Q г по представленным методикам, сопоставить полученные результаты, определить оптимальную длину горизонтального участка по графику зависимости дебита скважины от длины ГС для 10 значений (от изначального) с шагом в 50 метров для решений рассмотренных авторов.

Таблица 1.1

Решение. Задача решается следующим порядком:

1. Рассчитаем дебит ГС по методике Joshi S.D. Для этого необходимо определить параметр анизотропии из выражения 1.3 и большую полуось эллипса дренирования (выражение 1.2):

Подставляя полученные результаты в выражение 1.1 получаем,

2. Рассчитаем дебиты ГС по методике Борисова Ю.П.

Фильтрационное сопротивление, определяемое по формуле 1.6:

Для определения суточного дебита умножаем полученный результат на количество секунд в сутках (86 400).

3. Рассчитаем дебиты ГС по методике Giger.

Фильтрационное сопротивление J принимать выражение (1.7)

Определяем дебит ГС:

Для определения суточного дебита умножаем полученный результат на количество секунд в сутках (86 400).

4. Сопоставляем полученные результаты:

5. Рассчитаем дебиты скважины для 20 значений длины горизонтального участка с шагом в 50 метров по представленным методикам и построим графическую зависимость:

L длина горизонтального участка Дебит ГС, м 3 /сут (Joshi S.D.) Дебит ГС, м 3 /сут (Борисова Ю.П.) Дебит ГС, м 3 /сут (Giger)
1360,612 1647,162 1011,10254
1982,238 2287,564 1318,32873
2338,347 2628,166 1466,90284
2569,118 2839,562 1554,49788
2730,82 2983,551 1612,26295
2850,426 3087,939 1653,21864
2942,48 3167,09 1683,77018
3015,519 3229,168 1707,43528
3074,884 3279,159 1726,30646
3124,085 3320,28 1741,70642
3165,528 3354,7 1754,51226
3200,912 3383,933 1765,32852
3231,477 3409,07 1774,58546
3258,144 3430,915 1782,59759
3281,613 3450,074 1789,60019
3302,428 3467,016 1795,77275
3321,015 3482,103 1801,2546
3337,713 3495,624 1806,15552
3352,797 3507,811 1810,56322
3366,489 3518,853 1814,54859

Рисунок 1.3 – Зависимость изменения дебита скважины от длины горизонтального участка

Выводы: По результатам расчета прогнозного дебита горизонтальной скважины по методикам Joshi S.D., Борисова Ю.П., Giger для геолого-физических условий пласта ПК 20 Ярайнерского месторождения следует:

‑ при незначительном отличии (формой притока в горизонтальной проекции) аналитических моделей работы горизонтальных скважин, вскрывших однородно-анизотропный пласт в середине между кровлей и подошвой, отличие расчетных дебитов достаточно большое;

‑ для условий пласта ПК 20 Ярайнерского месторождения были построены графические зависимости прогнозного дебита скважины от длины горизонтального участка, по результатам анализа следует, что оптимальными будут варианты в интервале L 1 =150 м. Q 1 =2620 м 3 /сут до L 2 =400 м. Q 2 =3230 м 3 /сут;

‑ полученные значения являются первыми приближенными результатами подбора оптимальной длины горизонтального участка скважины, дальнейшее обоснование строится на уточнении прогнозных значений дебитов на цифровых моделях пласта и пересчете экономики, по результатам расчета которых будет выбран наиболее рациональный вариант.

Варианты Задача №1

Вар. №скв Месторождение, пласт Длина ГС, м h нн, м Kh, мД Кv, мД Вязкость, мПа*с Рпл, МПа Рзаб, МПа Радиус скв, м Rk,м
210Г Ярайнерское, ПК20 1,12 17,5 14,0 0,1
333Г Ярайнерское, АВ3 1,16 6,0 0,1
777Г Ярайнерское, АВ7 1,16 11,0 0,1
302Г Ярайнерское, АВ10 1,16 21,8 13,0 0,1
2046Г Ярайнерское, БВ2 0,98 21,1 13,7 0,1
4132Г Ярайнерское, БВ4 0,98 23,1 16,0 0,1
4100Г Ярайнерское, БВ4-1 0,98 23,3 16,0 0,1
611Г Ярайнерское, БВ6 0,51 16,0 0,1
8068Г Ярайнерское, БВ8 0,41 24,3 5,8 0,1
Ярайнерское, БВ8 0,41 24,3 11,2 0,1
215Г Ярайнерское, ПК20 1,12 17,5 15,0 0,1
334Г Ярайнерское, АВ3 1,16 11,0 0,1
615Г Ярайнерское, АВ7 1,16 16,0 0,1
212Г Ярайнерское, АВ10 1,16 21,8 15,0 0,1
2146Г Ярайнерское, БВ2 0,98 21,1 17,8 0,1
4025Г Ярайнерское, БВ4 0,98 23,1 13,0 0,1
513Г Ярайнерское, БВ4-1 0,98 23,3 18,0 0,1
670Г Ярайнерское, БВ6 0,51 19,5 0,1
554Г Ярайнерское, БВ8 0,41 24,3 11,34 0,1
877Г Ярайнерское, БВ8 0,41 24,3 16,2 0,1
Продолжение таблицы 1.1
322Г Ярайнерское, ПК20 1,12 17,5 14,9 0,1
554Г Ярайнерское, АВ3 1,16 15,3 0,1
789Г Ярайнерское, АВ7 1,16 12,7 0,1
Ярайнерское, АВ10 1,16 21,8 9,8 0,1
2475Г Ярайнерское, БВ2 0,98 21,1 12,9 0,1
4158Г Ярайнерское, БВ4 0,98 23,1 13,8 0,1
Ярайнерское, БВ4-1 0,98 23,3 18,2 0,1
688Г Ярайнерское, БВ6 0,51 14,3 0,1
8174Г Ярайнерское, БВ8 0,41 24,3 18,6 0,1
882Г Ярайнерское, БВ8 0,41 24,3 15,2 0,1

Контрольные вопросы.

Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа). Технический результат заключается в получении результатов измерений с достоверностью в диапазоне от минус 5,0 до плюс 5,0% без наличия явно выраженных систематических ошибок, которые характерны для известных способов. Способ включает: организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа, измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой, отбор пробы потока природного газа, определение компонентного состава для отобранной пробы потока природного газа. Формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ. Определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины с учетом ε - коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.; d - диаметра отверстия диафрагмы ДИКТа, м; z 1 и z 2 - коэффициентов сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.; z CT - коэффициента сжимаемости газа при стандартных условиях, ед.; р 1 - абсолютного давления газа перед диафрагмой ДИКТа, МПа; р СТ - давления, соответствующего стандартным условиям р СТ =1,01325⋅10 5 Па; Т СТ - температуры, соответствующей стандартным условиям Т СТ =293,15 К; T 1 - абсолютной температурой газа перед диафрагмой ДИКТа, К; R - молярной газовой постоянной R=8,31 Дж/(моль⋅К); М - молярной массы газа, кг/моль; k - показателя адиабаты газа, ед.; β - относительного диаметра отверстия диафрагмы ДИКТа (β=d/D), доли ед.; D - внутреннего диаметра цилиндрической части корпуса ДИКТа перед сужающим устройством, при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют с учетом приведенной температуры газа перед диафрагмой ДИКТа и приведенного давления газа перед диафрагмой ДИКТа. 8 ил., 3 табл.

Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа).

Достоверное определение дебита по газу для газовых скважин оказывает значимое влияние на контроль процесса разработки газовых месторождений, формирование комплекса мероприятий по его совершенствованию и оценку эффективности капитальных ремонтов скважин.

Измерение дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа осуществляется путем:

Измерения термобарических параметров потока перед диафрагмой ДИКТа с использованием средств измерений температуры и давления;

Определения или принятия компонентного состава газового потока для расчета необходимых термобарических параметров рассматриваемого потока, которые будут использоваться в выражении для определения дебита по газу для газовой скважины;

Расчета необходимых термодинамических параметров для газового потока на основе известного его компонентного состава и термобарических параметров;

Расчета дебита (расхода) по газу для газовых скважин по функциональным зависимостям взаимосвязи расхода рассматриваемого потока с его термобарическими, термодинамическими и газодинамическими параметрами, соответствующими режиму критического истечения потока через ДИКТ, которые основываются на совместном решении уравнений неразрывности потока среды и Первого начала термодинамики.

В описанной последовательности измерения существенное влияние на точность получаемого значения дебита по газу для газовых скважин оказывает выбор:

Используемого расчетного выражения для его определения;

Способов нахождения необходимых термодинамических и газодинамических параметров для потока природного газа, значения которых используются в выбранном расчетном выражении для определения дебита.

Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Е.Л. Роулинса и М.А. Шелхардта выражению (приложение 2, с. 120)

С - коэффициент расхода (дебита), ед.;

р - абсолютное давление потока газа перед диафрагмой ДИКТа, МПа;

Т - абсолютная температура потока газа перед диафрагмой ДИКТа, К.

Относительная плотность газа по воздуху, доли ед.

Входящий в выражение (1) коэффициент расхода (C) определяется по эмпирически табулированной функции от диаметра отверстия диафрагмы ДИКТа, приведенной в работе Е.Л. Роулинса и М.А. Шелхардта (таблица 26 приложения 2, с. 122).

К недостаткам известного способа определения дебита по газу с использованием выражения (1) относится:

Табулированность коэффициента расхода (С) (нет данных о значениях коэффициента расхода (С) не представленных в таблице 26 приложения 2, с. 122 работы Е.Л. Роулинса и М.А. Шелхардта );

Зависимость коэффициента расхода (С) входящего в выражение (1), в виде табулированной функции от диаметра отверстия диафрагмы ДИКТа , где dim d=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (C), выведенная из выражения (1), составляет
;

Малая апробация расчетного выражения при его формировании (апробация проведена на одной скважине);

Отсутствие поправки на отклонение свойств природного газа от законов идеального состояния;

Отсутствие в явном виде учета термодинамических и газодинамических параметров в месте максимального сжатия струи газового потока за диафрагмой ДИКТа;

Описанные недостатки приводят к получению систематически заниженного результата измерения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от минус 14,0 до минус 1,5% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Е.Л. Роулинса и М.А. Шелхардта с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 1.

Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Д.Л Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] выражению (формула VIII. 28, с. 320)

где Q - объемный расход (дебит) газа, приведенный к абсолютному давлению 1,033 am и температуре 15,6°C, м 3 /ч;

z l и z 2 - коэффициенты сжимаемости газа в сечениях до и после диафрагмы ДИКТа, ед.;

F 2 - площадь поперечного сечения отверстия диафрагмы ДИКТа, мм 2 ;

С р - удельная теплоемкость газа, ккал/(кг⋅°C);

р 1 - абсолютное давление перед диафрагмой ДИКТа, am;

T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К.

Входящие в состав выражения (2) термодинамические параметры потока природного газа определяются по номограммным зависимостям от приведенных термобарических параметров, которые представлены в Д.Л. Катц [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.], а именно

Показатель адиабаты по номограмме, приведенной на рис. IV. 56, с. 124;

Коэффициент сжимаемости по номограмме, приведенной на рисунках IV. 16 и IV. 17, с. 98;

Удельная теплоемкость газа по номограмме, приведенной на рис. IV. 55, с. 125.

Используемые приведенные термобарические параметры потока природного газа при нахождении его термодинамических параметров определяются на основе известных:

Относительной плотности газа по воздуху;

Термобарических параметров, при которых определяются термодинамические параметры потока природного газа;

Критических термобарических параметров для рассматриваемого потока.

К недостаткам известного способа определения дебита по газу с использованием выражения (2) относится:

Отсутствие учета влияния на результат скорости движения газового потока в прямолинейном участке корпуса ДИКТа перед диафрагмой;

Принятие площади поперечного сечения потока в месте максимального его сжатия за диафрагмой ДИКТа, равной площади поперечного сечения отверстия используемого сужающего устройства, что приводит к отсутствию учета влияния на результат коэффициента сжатия струи рассматриваемого потока при критическом истечении через диафрагму;

Описанные недостатки приводят к получению систематически заниженного результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от минус 17.5 до минус 12,5% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Д.Л Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 2.

Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.] выражению (формула 5.3, с. 195):

где q SC - объемный расход (дебит) газового потока, приведенный к стандартным условиям, тыс. ст. м 3 /сут;

C n - коэффициент подачи, ед.;

p 1 - абсолютное давление газа перед диафрагмой ДИКТа, МПа;

d ch - диаметр отверстия диафрагмы ДИКТа, м;

Относительная плотность газа по воздуху, доли ед.;

z 1 - коэффициент сжимаемости газа перед диафрагмой ДИКТа, доли ед.;

k - показатель адиабаты газа, ед.;

y - отношение давлений газового потока после и до диафрагмы ДИКТа, доли ед.

Входящие в выражение (3) величины, согласно работы Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.], определяются:

Коэффициент подачи по формуле (формула 5.4 с. 195):

где C s - переводной коэффициент, зависящий от применяемой системы единиц измерения, доли ед.;

C D - коэффициент подачи, доли ед.;

T SC - значение абсолютной температуры при стандартных условиях, К;

p SC - значение давления при стандартных условиях, МПа;

Отношение давлений газового потока после и до диафрагмы ДИКТа по формуле (формула 5.5 с. 195):

где p 2 - давление газа за диафрагмой ДИКТа, МПа.

Термобарические параметры потока газа по представленным номограммам в работе Д.Л. Катца [Д.Л. Катц. Руководство по добыче, транспорту и переработке природного газа. - М.: Недра, 1965. - 677 с.] или по уравнениям состояния Соава-Редлиха-Квонга и Пенга-Робинсона.

Входящие в формулу (4) величины принимаются:

C S , T SC и P SC из таблицы 5.1, приведенной на с. 195 в зависимости от используемой системы единиц измерений;

C D из диапазона от 0,82 до 0,90 (с. 196).

К недостаткам известного способа определения дебита по газу с использованием выражения (3) относится:

Отсутствие учета скорости движения газового потока перед диафрагмой ДИКТа;

Отсутствие учета коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа;

Использование эмпирического коэффициента подачи (C D), без представления рекомендаций по выбору его значения для применения;

Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

Описанные недостатки приводят к систематическому отклонению результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследования с использованием ДИКТа в диапазоне от плюс 3,0 до минус 15,5% в зависимости от изменения относительного отверстия используемой диафрагмы и принимаемого значения коэффициента подачи (C D). Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе Дж. П. Брилла и X. Мухерджи [Дж. П. Брилл, X. Мукерджи. Многофазный поток в скважинах. - Москва-Ижевск: Институт компьютерных исследований, 2006. - 384 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 3.

Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] выражению (формула 177.3, с. 169):

где Q - объемный расход (дебит) газа, тыс.ст.м 3 /сут;

C - коэффициент расхода, ед.;

δ - поправочный коэффициент для учета изменения показателя адиабаты реального газа, ед.;

P D - абсолютное давление перед диафрагмой ДИКТа, ата;

Относительная плотность газа по воздуху, доли ед.;

T D - абсолютная температура газа перед диафрагмой ДИКТа, К.

Z - коэффициент сжимаемости газа перед диафрагмой ДИКТа, доли ед.

Входящий в выражение (6) коэффициент расхода (С), зависящий от диаметров диафрагм и измерительной линии, определяется расчетным путем или из рисунка 67 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. -М.: Наука, 1995. - 523 с.]. Для ДИКТа с диаметром корпуса 50,8⋅10 -3 м в диапазоне изменения диаметра диафрагм 1,59⋅10 -3 ≤d≤12,7⋅10 -3 м величину коэффициента расхода (С) следует определять по формуле (формула 178.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

где d - диаметр отверстия диафрагмы ДИКТа, мм.

В диапазоне изменения диаметра диафрагм 12,7⋅10 -3 ≤d≤38,1⋅10 -3 м значение коэффициента расхода (С) должно быть вычислено по формуле (формула 179.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

Для ДИКТа с диаметром корпуса 101,6⋅10 -3 м значение коэффициента расхода (С) в диапазоне изменения диаметра диафрагмы 6,35⋅10 -3 ≤d≤76,2⋅10 -3 м должно быть вычислено по формуле (формула 180.3 с. 169 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995.-523 с.]):

Входящий в выражение (6) поправочный коэффициент (δ) по формуле (формула 181.3 с. 170 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

где k - показатель адиабаты газа, ед.

Если значение показателя адиабаты газа (k) неизвестно, то величина (δ) может быть определена графически из рисунка 68 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] при различных приведенных давлениях и температурах по формуле (формула 182.3 с. 171 [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]):

Приведенное давление перед диафрагмой ДИКТа, ед.

Приведенные давления и температуры определяются согласно раздела 2.2 работы А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]

К недостаткам известного способа определения дебита по газу с использованием выражения (6) относится:

Зависимость коэффициента расхода (С) входящего в выражение (6), в виде эмпирической полиномиальной зависимости от диаметра отверстия диафрагмы ДИКТа , где dimd=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (C) выведенная из выражения (6) составляет
;

Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

Описанные недостатки приводят к получению систематического отклонения результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследованиях с использованием ДИКТа в диапазоне от плюс 55,0 до минус 10,0% в зависимости от:

Изменения относительного отверстия используемой диафрагмы;

Выбора расчетного выражения из (8) и (9) для нахождения поправочного коэффициента (δ).

Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе А.И. Гриценко, З.С. Алиева, О.М. Ермилова, В.В. Ремизова, Г.А. Зотова [А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 4.

Известен способ расчета дебита по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа по изложенному в работе З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] выражению (формула VI. 8, с. 201)

где Q - объемный расход (дебит) газа, тыс. ст. м 3 /сут;

C - коэффициент расхода, ед.;

Δ - поправочный коэффициент, ед.;

p - абсолютное давление перед диафрагмой ДИКТа, МПа;

Относительная плотность газа по воздуху, доли ед.;

Т - абсолютная температура газа перед диафрагмой ДИКТа, К.

z - коэффициент сжимаемости газа перед диафрагмой ДИКТа, ед.

Входящие в выражение (12) коэффициент расхода (С) предлагается определять по эмпирически табулированной функции от диаметра отверстия используемой диафрагмы в ДИКТе, приведенной в таблице VI. 9 работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.], а поправочный коэффициент (Δ) по рисунку VI. 23 работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] или по формуле (формула VI. 9, с. 204 [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.]):

где T np - приведенная температура газа перед диафрагмой ДИКТа, ед.;

p np - приведенное давление перед диафрагмой ДИКТа, ед.

Приведенные температура и давление определяются согласно главе II работы З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.].

К недостаткам известного способа определения дебита по газу с использованием выражения (12) относится:

Зависимость коэффициента расхода (C) входящего в выражение (12), в виде эмпирической полиномной зависимости от диаметра отверстия диафрагмы ДИКТа , где dimd=L, не может охватить весь спектр изменения термодинамических и газодинамических параметров потока природного газа, оказывающих влияние на результат расчета его дебита, так как размерность коэффициента (С) выведенная из выражения (12) составляет
;

Отсутствие учета влияния на результат определения дебита термодинамических параметров газового потока и коэффициента сжатия струи в месте максимального сжатия струи рассматриваемого потока за диафрагмой ДИКТа;

Отсутствие сведений о точностных характеристиках получаемого результата измерения дебита по газу для газовых скважин.

Описанные недостатки приводят к получению систематического завышения результата определения дебита (расхода) по газу для газовых скважин при гидродинамических исследований с использованием ДИКТа в диапазоне от 30 до 70% в зависимости от изменения относительного отверстия используемой диафрагмы. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному известному способу в работе З.С. Алиева, Г.А. Зотова [Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. З.С. Зотова, Г.А. Алиева. - М.: Недра, 1980. - 301 с.] с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 5.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 5.

Технической проблемой, решаемой при применении заявляемого технического решения, является разработка способа определения дебита (расхода) по газу для газовых скважин при гидродинамических исследованиях на установленных режимах фильтрации с использованием ДИКТа, который повысит достоверность получаемого результата.

Технический результат заключается в повышении достоверности определения дебита (расхода) по газу для газовых скважин с использованием ДИКТа до диапазона от минус 5,0 до плюс 5,0% путем исключения причин возникновения систематических ошибок при использовании известных способов расчета рассматриваемого показателя, изложенных в работах .

Указанный технический результат достигается тем, что предлагаемый способ определения дебита (расхода) по газу для газовых скважин с применением ДИКТа предполагает использование:

а) средств измерений давления и температуры утвержденного типа с установленной допустимой погрешностью измерений для измерения термобарических параметров потока природного газа, движущегося по прямолинейному участку корпуса ДИКТа до диафрагмы;

б) стандартизированных в сфере обеспечения единства измерений РФ методов (методик) измерений для отбора проб потока природного газа и определения его компонентного состава;

в) стандартизированных в системе обеспечения единства измерений РФ расчетных методик (методов) измерений при определении термодинамических параметров потока природного газа (плотности при стандартных условиях, молекулярной массы, коэффициента сжимаемости при стандартных условиях и термобарических параметрах в линейной части корпуса ДИКТа и в месте максимального сжатия потока за диафрагмой ДИКТа, показателя адиабаты);

г) расчетного выражения для нахождения дебита по газу для газовых скважин, базирующегося на совместном решении уравнений неразрывности потока среды и Первого начала термодинамики, которым учитываются:

Отклонения термодинамических свойств потока природного газа от законов идеального газа путем включения в выражение в качестве его составляющих плотности при стандартных условиях, молекулярной массы, коэффициента сжимаемости при стандартных условиях и термобарических параметрах в линейной части корпуса ДИКТа и в месте максимального сжатия потока за диафрагмой ДИКТа, показателя адиабаты;

Формируемая структура гидродинамического режима прохождения потоком природного газа диафрагмы ДИКТа в режиме критического истечения путем включения в выражение в качестве его составляющих относительного диаметра отверстия диафрагмы и коэффициента сжатия струи рассматриваемого потока за диафрагмой ДИКТа при его выходе в атмосферу и рассмотрения в качестве не исключаемой величины скорости движения газового потока в линейной части корпуса ДИКТа при выводе расчетного выражения;

д) расчетного метода определения коэффициента сжатия струи потока природного газа за диафрагмой ДИКТа, входящего в расчетное выражение нахождения дебита по газу для газовых скважин, базирующегося на взаимосвязи рассматриваемого показателя с термодинамическими параметрами потока (приведенными температурой и давлением потока природного газа при его термобарических параметрах в линейной части корпуса ДИКТа перед диафрагмой и показателем адиабаты);

е) стандартизированных в системе обеспечения единства измерений РФ способов оценки точности методов (методик) измерений, базирующихся на формировании багажа неопределенности измерений на основе рассмотрения неопределенностей составляющих принимаемой функции измерений.

Способ поясняется иллюстративными материалами, где:

на фиг. 1 представлен вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (1) от измеренного с использованием методики, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

на фиг. 2 - вид зависимости относительного отклонения значений определяемого дебита (расхода) по газу для газовых скважин по выражению (2) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

на фиг. 3 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (3) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований и принимаемого значения коэффициента подачи (C D);

на фиг. 4 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (6) от измеренных значений по методике, изложенной в ГОСТ 8.586.5-2005 от изменения относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований и выбора расчетного выражения из (8) и (9) для нахождения поправочного коэффициента (δ);

на фиг. 5 - вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (10) от измеренного по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

на фиг. 6 - показана схема критического истечения газового потока через диафрагму ДИКТа при проведении газодинамических исследований скважин, 0 - сечение, характеризующее режим движения газового потока в месте его входа в отверстие диафрагмы; I - сечение в прямолинейном участке трубопровода; II - сечение набольшего сужения струи газового потока; 8 - сужающее устройство - диафрагма; 9 - накидная гайка для крепления сужающего устройства к корпусу; 10 - прямолинейный участок корпуса ДИКТа; Q CT - объемный расход (дебит) по газу газовой скважины, приведенный к стандартным условиям; ρ - плотность газового потока; ω - линейная скорость движения газового потока; p - давление газового потока; T - абсолютная температура газового потока;

на фиг. 7 показан вид зависимости относительного отклонения определяемого дебита (расхода) по газу для газовых скважин по выражению (14) от значений, измеренных по методике, изложенной в ГОСТ 8.586.5-2005 при изменении относительного отверстия используемой диафрагмы в ДИКТе при проведении газодинамических исследований;

на фиг. 8 представлена схема сбора измерительной линии в типовой технологической кустовой обвязке газовых скважин для проведения газодинамических исследований при установившихся режимах фильтрации с применением ДИКТа. Цифрами обозначено: 1 - газовая скважина; 2 - трубопроводы технологической типовой кустовой обвязки газовой скважины; 3 - угловой штуцер-регулятор дебита скважины; 4 - запорная арматура скважины и технологической кустовой обвязки; 5 - ДИКТ; 6 - амбар дожига выходящего газового потока с ДИКТа в атмосферу; 7 - линии направления движения газового потока Т.1 и Т.2 - места измерения температуры и давления газового потока, при его движении по линейной части корпуса ДИКТа; Т.3 - место отбора пробы потока газа для определения его компонентного состава.

Сущность способа определения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований заключается в организации прохождения рассматриваемым потоком стандартного сужающего устройства (диафрагмы) в режиме критического истечения по приведенной схеме на фиг. 6. Для этого используется типовая конструкция диафрагменного измерителя критического течения (ДИКТа). Режим критического истечения природного газа через диафрагму ДИКТа обеспечивает достижение скорости движения потока в сечении II фиг. 6 значения локальной скорости звука, выходя из используемого технического устройства в атмосферу. При этом расход проходящего газового потока через ДИКТ и его термобарические параметры в месте максимального сжатия струи за диафрагмой (сечение II, фиг. 6) становятся зависимыми от термобарических параметров рассматриваемого потока в поперечном сечении корпуса используемого технического устройства перед сужающим устройством (сечение I, фиг. 6). В рассматриваемом случае значение расхода определяется по функциональной его взаимосвязи с термобарическими, термодинамическими и газодинамическими параметрами в сечениях до диафрагмы ДИКТа (сечение I, фиг. 6) и в месте максимального сжатия струи за сужающим устройством (сечение II, фиг. 6), которая выводится на основе совместного решения уравнений неразрывности потока среды и Первого начала термодинамики. Значение расхода газового потока рассчитывается по формуле, приведенной в работе М.С. Рогалева, Н.В. Саранчина, В.Н. Маслова, А.Б. Дерендяева [М.С. Рогалев, Н.В. Саранчин, В.Н. Маслов, А.Б. Дерендяев. Определение расхода газового потока при проведении гидродинамических исследований скважин // Известия вузов. Нефть и газ. - 2014. - №6. - С. 50-58.], имеющей алгебраический вид:

где Q CT - объемный расход (дебит) газа, ст. м 3 /с;

ε - коэффициент сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.;

p CT - давление, соответствующее стандартным условиям p CT =1,01325⋅10 5 Па;

T CT - температура, соответствующая стандартным условиям T CT =293,15 К;

T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К;

M - молярная масса газа, кг/моль;

k - показатель адиабаты газа, ед.;

D - внутренний диаметр цилиндрической части корпуса ДИКТа при рабочих условиях среды перед диафрагмой (используется при расчете относительного диаметра отверстия диафрагмы), м.

Используемые термодинамические параметры природного газа в выражении (14) определяются с применением стандартизованных в системе обеспечения единства измерений РФ расчетных методов, базирующихся на известных:

Термобарических параметрах потока в сечении перед диафрагмой ДИКТа (сечение I, фиг. 6) и в месте максимального сжатия его струи за диафрагмой ДИКТа (сечение II, фиг. 6);

Компонентном составе потока.

Для нахождения термодинамических параметров природного газа применяются стандартизированные в системе обеспечения единства измерений РФ расчетные методики (методы) измерений, в частности, для определения:

Коэффициентов сжимаемости при необходимых термобарических параметрах, изложенная расчетная методика в разделе 4 на с. 3-8 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], базирующаяся на формуле общего вида:

где A 1 и A 2 коэффициенты уравнения состояния;

Молекулярной массы, приведенная формула (6) на с. 6 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид.

M j - молярная масса j-го компонента, входящего в состав природного газа, кг/моль;

Коэффициент сжимаемости при стандартных условиях приведенная формула (3) на с. 5 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид

где x j - молярная доля j-го компонента, входящего в состав природного газа, доли ед.;

- коэффициент суммирования j-го компонента, входящего в состав природного газа, принимается из таблицы 2 раздела 10 на с. 12-13 ГОСТ 31369-2008, доли ед.;

Плотности газа при стандартных условиях, приведенная формула (15) на с. 8 ГОСТ 31369-2008 [Международная система стандартизации. Газ природный. Вычисление теплоты сгорания, относительной плотности и числа Воббе на основе компонентного состава. - М.: Стандартинформ, 2009. - 58 с.], имеющая следующий алгебраический вид

где ρ c - плотность реального газа при стандартных условиях, кг/м 3 ;

Плотность идеального газа для стандартных условий, рассчитываемая по формуле (12), приведенной на с. 7 ГОСТ 31369-2008 и имеющей следующий алгебраический вид

Показателя адиабаты изложенная расчетная методика в разделе 5 на с. 8-9 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], базирующаяся на формуле общего вида

где x а - молярная доля азота, доли ед.

Необходимые параметры природного газа для нахождения его термодинамических свойств по описанным методикам определяются на основе:

Молярных долей компонентов в потоке природного газа, принимаемых из полученного компонентного состава, определяемого на основе отобранных проб по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] путем проведения хроматографических исследований по приведенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.];

Термобарических параметров (температуры (T 1) и давления (p 1)) потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой, определяемых путем прямых измерений средствами измерений температуры и давления;

Термобарических параметров (температуры (T 2) и давления (p 2)) потока природного газа в месте максимального сжатия его струи за диафрагмой ДИКТа, определяемых по приведенным формулам в работе А.Д. Альтшуля, Л.С. Житовского, Л.П. Иванова [Гидравлика и аэродинамика: Учеб. для вузов / А.Д. Альтшуль, Л.С. Животовский, Л.П. Иванов. - М.: Стройиздат, 1987. - 414 с.: ил.], имеющим следующий алгебраический вид

где p 2 - абсолютное давление газа в месте максимального сжатия его струи за диафрагмой ДИКТа, МПа;

T 2 - абсолютная температура газа в месте максимального сжатия его струи за диафрагмой ДИКТа, К.

Входящие в выражение (14) диаметр отверстия диафрагмы (d) и внутренний диаметр цилиндрической части корпуса ДИКТа перед сужающим устройством (D) находятся по формулам (5.4) и (5.5), приведенным на с. 20 в пункте 5.5 раздела 5 ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющим следующий алгебраический вид

где d 20 - диаметр отверстия диафрагмы ДИКТа при 20°C, м;

K СУ - коэффициент температурного линейного расширения материала диафрагмы ДИКТа, доли ед.;

D 20 - диаметр прямолинейного участка трубопровода перед сужающим устройством (диафрагмой) ДИКТа при 20°С, м;

K T - коэффициент температурного линейного расширения материала прямолинейного участка трубопровода перед сужающим устройством (диафрагмы ДИКТа), доли ед.

Входящие в выражение (23) и (24) коэффициент температурного линейного расширения материала диафрагмы ДИКТа (K СУ) и коэффициент температурного линейного расширения материала прямолинейного участка корпуса ДИКТа перед сужающим устройством (K T) находятся по формулам (5.6) и (5.7), приведенным на с. 20 в пункте 5.5 раздела 5 ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющим следующий алгебраический вид:

где α tСу - температурный коэффициент линейного расширения материала диафрагмы ДИКТа, 1/°C;

α t T - температурный коэффициент линейного расширения материала прямолинейного участка корпуса ДИКТа, 1/°C.

Значения температурных коэффициентов линейного расширения для материалов диафрагмы и корпуса ДИКТа, входящих в выражения (25) и (26), рассчитываются по формуле (Г.1), приведенной на странице 25 в приложении Г ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.], имеющей следующий алгебраический вид

где а 0 , а 1 , а 2 - постоянные коэффициенты, определяемые в соответствии с таблицей Г. 1, приведенной на с. 25-26 приложения Г ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Ч. 1. Принцип метода измерений и общие требования. - М.: Стандартинформ, 2007. - 72 с.].

Используемый в выражении (14) коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа предлагается рассчитывать по формуле

где - приведенная температура газа перед диафрагмой ДИКТа, ед.;

Приведенное давление газа перед диафрагмой ДИКТа, ед..

Входящие в выражение (28) значения приведенных давления и температуры потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой рассчитываются по формулам (35) и (36), представленным на с. 10 в пункте 7.2 раздела 7 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], имеющим следующий алгебраический вид

где p ПК - псевдокритическое давление газа, МПа;

T ПК - псевдокритическая температура газа, K.

Входящие в выражение (29) и (30) значения псевдокритических давления (p ПК) и температуры (T ПК) потока природного газа рассчитываются по формулам (37) и (38), представленным на с. 11 в пункте 7.2 раздела 7 ГОСТ 30319.2-2015 [Международная система стандартизации. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода. - М.: Стандартинформ, 2016. - 16 с.], имеющим следующий алгебраический вид

где x а - молярная доля азота, доли ед.;

x y - молярная доля углекислого газа, доли ед.

Оценка относительной расширенной неопределенности измерений дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием ДИКТа по изложенному способу выполнена на основе приведенной методики в ГОСТ Р 54500.3-2011 [Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. - М.: Стандартинформ, 2012. - 107 с.]. Для этого использовано выведенное выражение для оценки относительной расширенной неопределенности измерений объемного расхода природного газа, приведенного к стандартным условиям, которое имеет следующий общий алгебраический вид:

где - относительная расширенная неопределенность измерения объемного расхода газа приведенного к стандартным условиям, %;

Относительная стандартная неопределенность определения давления газа перед диафрагмой, %;

Относительная стандартная неопределенность определения внутреннего диаметра диафрагмы ДИКТа, %;

Относительная стандартная неопределенность определения коэффициента сжимаемости газа при стандартных условиях, %;

Относительная стандартная неопределенность определения молярной массы газа, %;

Относительная стандартная неопределенность определения температуры газа перед диафрагмой ДИКТом, %;

Относительная стандартная неопределенность определения коэффициента сжатия струи газа в месте максимального ее сжатия за диафрагмой ДИКТа, %;

Относительная стандартная неопределенность определения коэффициента сжимаемости газа при термобарических параметрах перед диафрагмой ДИКТа, %;

Относительная стандартная неопределенность определения коэффициента сжимаемости газа при термобарических параметрах в месте максимального сжатия струи за диафрагмой ДИКТа, %;

Относительная стандартная неопределенность определения относительного диаметра диафрагмы ДИКТа, %;

Относительная стандартная неопределенность определения показателя адиабаты газа при термобарических параметрах перед диафрагмой ДИКТа, %.

Вывод выражения (33) основан на рассмотрении в качестве функции измерений выражение (14).

Оцененная относительная расширенная неопределенность измерений дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием ДИКТа по изложенному способу находится в диапазоне от минус 5,0 до плюс 5,0% без наличия выраженной систематической ошибки. Данное заключение сделано на основе сопоставления результатов измерения дебита по газу для газовых скважин по изложенному способу с результатами измерения данного параметра с использованием средств измерения расхода утвержденного типа, базирующихся на известном способе измерения расхода газа, изложенном в ГОСТ 8.586.5-2005 [Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений. - М.: Стандартинформ, 2007. - 94 с.]. Рассматриваемое сопоставление выполнено для ряда газовых скважин полуострова Ямал. Его обобщенные результаты приведены на фиг. 7.

На основе изложенной сущности способа определения дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа он реализуется выполнением последовательности действий:

а) организация движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа типовой конструкции в атмосферу по приведенной схеме на фиг. 6 путем сбора измерительной линии, представленной на фиг. 8;

б) измерение с использованием средств измерений температуры и давления утвержденного типа термобарических параметров (температуры и давления) для потока природного газа в корпусе ДИКТа перед диафрагмой в точках Т.1 и Т.2 измерительной линии, представленной на фиг. 8;

в) отбор пробы потока природного газа по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] из точки Т.3 измерительной линии, представленной на фиг. 8;

г) определение компонентного состава для отобранной пробы потока природного газа по изложенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.];

д) формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита (расхода) по газу для газовой скважины, который включает сведения о:

Материале, из которого изготовлена используемая диафрагме в ДИКТе, и о его температурном коэффициенте линейного расширения;

Материале, из которого изготовлена линейная часть корпуса используемого ДИКТа, и о его температурном коэффициенте линейного расширения;

Диаметре внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C;

Внутреннем диаметре цилиндрической части корпуса используемого ДИКТа при 20°C;

Температурном коэффициенте линейного расширения материала используемой диафрагмы в ДИКТе;

Температурном коэффициенте линейного расширения материала корпуса используемого ДИКТа;

Температуре газового потока в линейной части корпуса ДИКТа перед диафрагмой;

Давлении газового потока в линейной части корпуса ДИКТа перед диафрагмой;

Компонентном составе потока природного газа, проходящего через ДИКТЖ

е) определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа по формулам (15)-(32), необходимых для нахождения дебита (расхода) по газу для газовой скважины по выражению (14);

ж) нахождение дебита (расхода) по газу для газовой скважины по выражению (14).

На основе изложенной сущности способа определения дебита (расхода) по газу для газовых скважин при проведении гидродинамических исследований с использованием ДИКТа и описанного способа его реализации ниже приведен пример выполнения измерений.

На первом этапе организуется движение потока природного газа по измерительной линии, представленной на фиг. 8, с прохождением диафрагмы ДИКТа в режиме критического истечения по приведенной схеме на фиг. 6.

Затем проводятся измерения термобарических параметров (температуры и давления) для потока природного газа в корпусе ДИКТа перед диафрагмой в точках Т.1 и Т.2 измерительной линии, представленной на фиг. 8, с использованием средств измерений температуры и давления утвержденного типа с записью результатов, например:

Значение температуры потока природного газа в корпусе ДИКТа (T 1) 282,87 К;

Значение давления потока природного газа в корпусе ДИКТа (p 1) 6,34 МПа.

Потом осуществляется отбор пробы потока природного газа по изложенной методике в ГОСТ 31370-2008 (ИСО 10715:1997) [Международная система стандартизации. Газ природный. Руководство по отбору проб. - М.: Стандартинформ, 2009. - 47 с.] из точки Т.3 измерительной линии, представленной на фиг. 8.

Для отобранной пробы проводятся лабораторные хроматографические исследования по определения компонентного состава потока природного газа по изложенной методике в ГОСТ 31371.7-2008 [Международная система стандартизации. Газ природный. Определение состава методом газовой хроматографии с оценкой неопределенности. Ч. 7. Методика выполнения измерений молярной доли компонентов. - М.: Стандартинформ, 2009. - 21 с.]. Результат лабораторных хроматографических исследований представляется в табличной фирме по примеру, представленному таблицей 1.

После проведения измерений термобарических параметров (температуры и давления) потока природного газа в корпусе ДИКТа перед диафрагмой и лабораторных хроматографических исследований по определению его компонентного состава формируется массив исходных данных для определения термобарических, термодинамических и газодинамических параметров потока, используемых при нахождении дебита (расхода) по газу для газовой скважины по формуле (14). Пример формируемого массива исходных данных приведен в таблице 2.

По завершению формирования массива исходных данных проводится расчет термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа по формулам (15)-(32), необходимых для нахождения дебита (расхода) по газу для газовой скважины по выражению (14). Пример представления результатов расчета необходимых термобарических, термодинамических и газодинамических параметров потока природного газа для нахождения дебита (расхода) по газу для газовой скважины по выражению (14) приведен в таблице 3.

После определения параметров потока природного газа, приведенных в таблице 3, и с использованием измеренных термобарических параметров рассматриваемого потока в линейной части корпуса ДИКТа перед диафрагмой осуществляется расчет дебита (расхода) по газу для газовой скважины по выражению (14). Расчет дебита осуществляется путем подстановки найденных числовых значений измеренных величин из таблицы 2 и предварительно рассчитанных промежуточных величин из таблицы 3 в выражение (14)

Способ определения дебита по газу для газовых скважин при гидродинамических исследованиях на установленных режимах фильтрации с использованием диафрагменного измерителя критического течения (ДИКТа), характеризующийся тем, что включает:

организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа типовой конструкции в атмосферу,

измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой,

отбор пробы потока природного газа,

определение компонентного состава для отобранной пробы потока природного газа,

формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ,

определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины по выражению

где Q СТ - объемный расход (дебит) газа, ст. м 3 /с;

ε - коэффициент сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.;

d - диаметр отверстия диафрагмы ДИКТа, м;

z 1 и z 2 - коэффициенты сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.;

z CT - коэффициент сжимаемости газа при стандартных условиях, ед.;

р 1 - абсолютное давление газа перед диафрагмой ДИКТа, МПа;

р СТ - давление, соответствующее стандартным условиям р СТ =1,01325⋅10 5 Па;

Т СТ - температура, соответствующая стандартным условиям Т СТ =293,15 К;

T 1 - абсолютная температура газа перед диафрагмой ДИКТа, К;

R - молярная газовая постоянная R=8,31 Дж/(моль⋅К);

М - молярная масса газа, кг/моль;

k - показатель адиабаты газа, ед.;

β - относительный диаметр отверстия диафрагмы ДИКТа (β=d/D), доли ед.;

D - внутренний диаметр цилиндрической части корпуса ДИКТа перед сужающим устройством,

при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют по формуле

где - приведенная температура газа перед диафрагмой ДИКТа, ед.;

- приведенное давление газа перед диафрагмой ДИКТа, ед.

Похожие патенты:

Группа изобретений относится к нефтедобывающей отрасли промышленности и может быть применена для эксплуатации скважин на многопластовых залежах нефти. Установка включает верхний штанговый насос трубного исполнения с боковым всасывающим клапаном, отверстием и нагнетательным клапаном в цилиндре для отбора продукции верхнего пласта, нижний насос трубного исполнения с нагнетательным, всасывающим клапанами для отбора продукции нижнего пласта и приемным патрубком, проходящим через пакер, разделяющий пласты, полые штанги, соединенные с плунжером насоса.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для оперативного учета дебитов продукции газоконденсатных месторождений и исследований работы многофазных расходомеров на реальной смеси газа, пластовой воды и нестабильного газового конденсата, получаемой непосредственно из скважины.

Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения. Технический результат заключается в получении результатов измерений с достоверностью в диапазоне от минус 5,0 до плюс 5,0 без наличия явно выраженных систематических ошибок, которые характерны для известных способов. Способ включает: организацию движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа, измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой, отбор пробы потока природного газа, определение компонентного состава для отобранной пробы потока природного газа. Формирование массива исходных данных для определения термобарических, термодинамических и газодинамических параметров потока природного газа, используемых при нахождении дебита по газу для газовой скважины, который включает сведения: материал, из которого изготовлена используемая диафрагме в ДИКТе, температурный коэффициент линейного расширения материала диафрагмы; материал, из которого изготовлена линейная часть корпуса используемого ДИКТа, температурный коэффициент линейного расширения материала корпуса ДИКТ; диаметр внутреннего отверстия используемой диафрагмы в ДИКТе при 20°C; внутренний диаметр цилиндрической части корпуса используемого ДИКТа при 20°C; температура и давление газового потока в линейной части корпуса ДИКТа перед диафрагмой; компонентный состав потока природного газа, проходящего через ДИКТ. Определение термобарических, термодинамических и газодинамических параметров потока природного газа в цилиндрической части корпуса ДИКТа перед диафрагмой и в месте максимального сжатия его струи за диафрагмой ДИКТа, нахождение дебита по газу для газовой скважины с учетом ε - коэффициента сжатия струи газового потока в месте максимального сжатия его струи за диафрагмой ДИКТа, доли ед.; d - диаметра отверстия диафрагмы ДИКТа, м; z1 и z2 - коэффициентов сжимаемости газа перед диафрагмой ДИКТа и в месте максимального сжатия его струи за диафрагмой ДИКТа, ед.; zCT - коэффициента сжимаемости газа при стандартных условиях, ед.; р1 - абсолютного давления газа перед диафрагмой ДИКТа, МПа; рСТ - давления, соответствующего стандартным условиям рСТ1,01325⋅105 Па; ТСТ - температуры, соответствующей стандартным условиям ТСТ293,15 К; T1 - абсолютной температурой газа перед диафрагмой ДИКТа, К; R - молярной газовой постоянной R8,31 Дж; М - молярной массы газа, кгмоль; k - показателя адиабаты газа, ед.; β - относительного диаметра отверстия диафрагмы ДИКТа, доли ед.; D - внутреннего диаметра цилиндрической части корпуса ДИКТа перед сужающим устройством, при этом коэффициент сжатия струи газового потока в месте максимального ее сужения за диафрагмой ДИКТа определяют с учетом приведенной температуры газа перед диафрагмой ДИКТа и приведенного давления газа перед диафрагмой ДИКТа. 8 ил., 3 табл.

контрольная работа

4. Расчет безводного дебита скважины, зависимость дебита от степени вскрытия пласта, параметра анизотропии

В большинстве газоносных пластов вертикальные и горизонтальные проницаемости различаются, причем, как правило, вертикальная проницаемость k в значительно меньше горизонтальной k г. Низкая вертикальная проницаемость снижает опасность обводнения газовых скважин, вскрывших анизотропные пласты с подошвенной водой в процессе их эксплуатации. Однако при низкой вертикальной проницаемости затрудняется и подток газа снизу в область влияния несовершенства скважины по степени вскрытия. Точная математическая связь между параметром анизотропии и величиной допустимой депрессии при вскрытии скважиной анизотропного пласта с подошвенной водой не установлена. Использование методов определения Q пр, разработанных для изотропных пластов, приводит к существенным погрешностям.

Алгоритм решения:

1. Определяем критические параметры газа:

2. Определяем коэффициент сверхсжимаемости в пластовых условиях:

3. Определяем плотность газа при стандартных условиях и далее при пластовых:

4. Находим высоту столба пластовой воды, необходимой для создания давления 0,1 МПа:

5. Определяем коэффициенты a* и b*:

6. Определяем средний радиус:

7. Находим коэффициент D:

8. Определяем коэффициенты K o , Q* и предельно безводный дебит Q пр.безв. в зависимости от степени вскрытия пласта h и для двух разных значений параметра анизотропии:

Исходные данные:

Таблица 1 - Исходные данные для расчета безводного режима.

Таблица 4 - Расчет безводного режима.

Анализ добывных возможностей скважин Озерного месторождения, оборудованных УЭЦН

Где - коэффициент продуктивности, ; - пластовое давление, ; - минимальное допустимое давление на забое,...

2. Нахождение распределения давления вдоль луча, проходящего через вершину сектора и центр скважины. 2. Анализ работы газовой скважины в секторе с углом р/2, ограниченном сбросами, при установившемся режиме фильтрации газа по закону Дарси 2...

Анализ работы газовой скважины в секторе с углом π/2, ограниченном сбросами, при установившемся режиме фильтрации газа по закону Дарси

Влияние изменения толщины газоносного пласта в процессе разработки газового месторождения

Установление технологического режима эксплуатации газовых скважин, вскрывших пласты с подошвенной водой, относится к задачам высшей сложности. Точное решение этой задачи с учетом нестационарности процесса конусообразования...

Геологическое строение и разработка Чекмагушевского нефтяного месторождения

Дебит - это главная характеристика скважины, которая показывает, какое максимальное количество воды она может дать в единицу времени. Дебит измеряется в м3/час, м3/день, л/мин. Чем больше дебит скважины, тем выше её производительность...

Гидродинамические исследования скважин Ямсовейского газоконденсатного месторождения

Уравнение притока газа к скважине рассчитывается по формуле: ,… (1) формула Г. А. Адамова для НКТ: ,… (2) уравнение движения газа в шлейфе: ,… (3) где Рпл- пластовое давление, МПа; Рвх - давление входа в коллектор...

Исследование движения жидкости и газа в пористой среде

1) Исследование зависимости дебита газовой скважины от угла б между непроницаемой границей и направлением на скважину при фиксированном расстоянии от вершины сектора до центра скважины...

Методы заводнения пластов

В настоящее время. Если ГЗУ оснащен турбинным объемным счетчиком, то на его показания влияют наличие жидкой фазы по всему сечению потока, величина вязкости, качество сепарации газа, наличие пенной структуры в измеряемой продукции...

Оценка производительности горизонтальных нефтяных скважин

нефтяной скважина производительность дренирование В этом нам поможет Excel файл, где применим формулу Джоши Заполняются желтые ячейки c 0,05432 коэф...

Подземная гидромеханика

Определяем дебит каждой скважины и суммарный дебит, если данный круговой пласт разрабатывается пятью скважинами, из которых 4 расположены в вершинах квадрата со стороной А = 500 м, а пятая - в центре...

Подземная гидромеханика

При плоскорадиальном вытеснении нефти водой дебит скважины определяется по формуле: (17) где: rн - координата (радиус) границы раздела нефть-вода в момент времени t...

Применение новых технологий при проведении ремонтно-изоляционных работ

В настоящее время большинство нефтяных месторождений находится на завершающей стадии разработки, на которой существенно осложняются процессы добычи, в частности, из-за высокой обводненности добываемой продукции...

Рассмотрим комплексный потенциал. Уравнение определяет семейство эквипотенциалей, совпадающих с изобарами : , (5) где - коэффициент проницаемости пласта, - динамический коэффициент вязкости насыщающей пласт жидкости...

Приток жидкости к скважине при частично изолированном контуре питания

Рассмотрим дебит при различных углах раскрытия проницаемого контура пласта (рис.10), полученный описанным методом с применением теории комплексного потенциала. Рис. 10 Зависимость дебита скважины от угла По графику видно...

Проект строительства горизонтальной добывающей нефтяной скважины глубиной 2910 м на Вынгапуровском месторождении

В настоящее время существует несколько способов вскрытия продуктивных горизонтов: при репрессии (Рпл < Рз), депрессии (Рпл > Рз) и равновесии. Бурение на депрессии и равновесии проводится только при полностью изученном разрезе...



mob_info