Цементит и феррит в перлитных сталях. Перлит Стали состоящие из перлита и цементита

Перлитная структура получила свое название от того, что после травленная она имеет под микроскопом перламутровый блеск.

В перлитном интервале превращения аустенита образуется перлитная структура — механическая смесь пластин феррита и цементита. Скорость, с которой формируются зародыши перлитной кристаллизации, зависит от переохлаждения аустенита по отношению в равновесной температуре образования цементита. Это переохлаждение возрастает с понижением температуры. Рост островков перлитной структуры зависит в основном от скорости диффузии атомов углерода и железа. Другими решающими факторами являются степень переохлаждения и выигрыш в свободной энергии при образовании феррита.

Механизмы образования перлитной структуры

Островки перлита растут не только за счет образования новых пластин, но и за счет роста старых пластин во всех направлениях. Карбидные пластины растут быстрее, чем ферритные. Процесс, однако, начинается с образования ферритных зародышей. Механизм формирования перлитной структуры до сих пор до конца не понят. Классический перлит – это множество так называемых перлитных колоний, которые состоят из чередующихся параллельных пластин феррита и цементита (рисунок 1).

Рисунок 1 — Эвтектоидный перлит

Перлитные зародыши возникают преимущественно в дефектных областях на границах зерен, на нерастворимых карбидах или неметаллических включениях.

Важнейшей характеристикой перлита является расстояние между его пластинами – межпластиночное расстояние (рисунок 2). С уменьшением этого расстояния прочностные свойства стали возрастают.

; название предложено Хоу и связано с перламутровым блеском (перлит напоминает перламутр). Перлит представляет собой эвтектоидную смесь двух фаз – феррита и цементита (в легированных сталях – карбидов). Перлит – продукт эвтектоидного распада аустенита при медленном охлаждении Fe-C-сплавов ниже 723°C. Аустенит (γ-железо) переходит в α-железо, в котором около 0,02% углерода; избыточный углерод выделяется в форме цементита или карбидов.

Структура перлита

В зависимости от формы различают пластинчатый и зернистый перлит . Структура пластинчатого перлита представлена на первом рисунке, структура зернистого перлита - на втором рисунке.

Дисперсные разновидности перлита иногда называют сорбитом и трооститом .

Таким образом, перлит , сорбит и троостит - это структуры с одинаковой природой (феррит + цементит), продукты распада аустенита, отличающиеся степенью дисперсности феррита и цементита .

Зернистый перлит и пластинчатый перлит

Перлитные структуры могут быть двух типов: пластинчатые и зернистые. В зернистом перлите цементит находится в виде зёрнышек. В пластинчатом перлите цементит находится в виде пластинок (см. рисунок).

ИЦМ(www.сайт)

Однородный (гомогенный) аустенит всегда превращается в пластинчатый перлит . Нагрев до высокой температуры, когда создаются условия для образования более однородной структуры, способствует появлению пластинчатых структур. Неоднородный аустенит при всех степенях переохлаждения даёт зернистый перлит . Нагрев до невысокой температуры приводит к образованию зернистого перлита (для заэвтектоидной стали ниже А С3 ; критическая точка А С3 - конец растворения вторичного цементита в аустените). Вероятно, образованию зернистого цементита способствуют оставшиеся не растворёнными в аустените частицы, являющиеся дополнительными центрами кристаллизации.

При исходном нагреве стали до 900°C получился пластинчатый перлит, причём более низкая температура даёт более дисперсную структуру. В такой же стали при тех же температурах превращения, но после невысокого нагрева (780°), получился зернистый перлит .

Размер цементитных зёрен в перлите зависит от температуры превращения аустенита, а форма цементита в перлите зависит от температуры нагрева (или температуры аустенизации ).

Свойства перлита

Свойства перлита зависят от типа, размера и формы цементитных зёрен, от расстояния между пластинами, а также от других факторов. Предел прочности пластинчатого перлита 80 кг/мм, относительное удлинение 10-12%. Прочность и твердость зернистого перлита несколько меньше, зато выше пластические свойства. Благодаря α-железу перлит обладает магнитными свойствами.

Твёрдость перлита

Значения твёрдости перлита , в зависимости от структуры и степени дисперсности могут меняться от При более дисперсном строении перлита твёрдость его повышается. Зависимость твёрдости от межпластинчатого расстояния (S) различных перлитных структур представлена в таблице :

Значения твёрдости перлита из различных источников: твёрдость пластинчатого перлита 180-230 HB, твёрдость зернистого перлита 160-190 HB.

Перлит вспученный

Перлитом также называется кислое вулканическое стекло с мелкой структурой, по которой оно раскалывается на мелкие шарики, имеющие иногда жемчужный блеск. Состав такого вспученного перлита, %: SiO 2 65-75; Al 2 O 3 10-15; Fe 2 O 3 1,5-2,5; CaO 1,5-2,5; MgO 1,5-2,0. Перлит вспученный содержит до 3-6% конституционной (связанной) воды. При быстром нагревании содержащаяся в этом перлите вода испаряется, вспучивая породу с увеличением объёма до 10-20 раз. Температура вспучивания 850-1200°C. Вспученный перлит имеет объёмную массу 70-600 кг/м 3 , что позволяет использовать его в качестве лёгкого заполнителя в теплоизоляционных изделиях.

Перлит вспученный находит применение прежде всего в строительстве: при изготовлении эффективной штукатурки, кирпича и блоков из искусственного перлитового камня (преимуществами которого являются малый вес и лёгкость обработки), в качестве звукоизоляционного наполнителя, утеплителя и т.д. Кроме того вспученный перлит применяют в сельском хозяйстве и не только.

Лит.:

  1. Гуляев А.П. Металловедение. - М.: Металлургия, 1977. - УДК669.0(075.8)
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  3. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ изд. Пер. с нем. М.: Металлургия, 1982. 480 с.

Основными компонентами, от которых зависит структура и свойства железоуглеродистых сплавов, являются железо и углерод. Чистое железо – металл серебристо-белого цвета с температурой плавления в 1539 °С. Железо имеет две полиморфные модификации: ) . Модификация существует при температурах ниже 911 °С и выше 1392 °С; гамма-железо – при температуре 911-1392 °С. В зависимости от температуры и концентрации углерода в железоуглеродистых сплавах (сталях и чугунах) образуются следующие твердые фазы: феррит, аустенит, цементит, графит.

1. Феррит (Ф) – твердый раствор внедрения углерода в альфа-железе.
Альфа-железо имеет ОЦК структуру, которая стабильна до 911 °С. Наибольшая растворимость углерода в альфа-железе – 0,02% при 727 °С. С понижением температуры снижается и растворимость углерода, и при комнатной температуре она составляет 0,005% по массе. По этой причине феррит называют технически чистым железом, он имеет незначительную твердость (HB = 80-100) и прочность (предел прочности в = 250 МПа), но высокую пластичность (относительное удлинение до 50%, относительное сужение до 80%).
При температуре от 1392 °С до 1539 °С железо также имеет ОЦК структуру - это дельта-железо. Твердый раствор внедрения углерода в дельта-железе называют высокотемпературным ферритом .

2. Аустенит (А) – твердый раствор внедрения углерода в гамма-железе.
Аустенит имеет ГЦК структуру. В железоуглеродистых сплавах аустенит может существовать только при высоких температурах. В гамма-железе углерод растворяется значительно лучше, чем в альфа-железе, максимальная растворимость углерода в гамма-железе составляет 2,14% и наблюдается при температуре 1147 °С. С пониженим температуры растворимость углерода снижается - до 0,8% при 727 °С. Аустенит имеет твердость HB = 160-200 и весьма пластичен (относительное удлинение 40-50%), наблюдается в сталях при температурах от 727 °С.

3. Цементит (Ц) – химическое соединение железа с углеродом (карбид железа Fe 3 C). В цементите содержится 6,67% углерода. Температура плавления цементита около 1600 °С. Он очень тверд (HB порядка 800 единиц), хрупок и практически не обладает пластичностью. Выделяют цементит первичный, вторичный и третичный. Их отличия заключаются в происхождении:
- первичный цементит образуется из жидкого расплава при кристаллизации железоуглеродистых сплавов (линия СD),
- вторичный цементит выпадает из аустенита (по причине уменьшения растворимости углерода в аустените с понижением температуры - линия SE)
- третичный цементит выпадает из феррита с понижением температуры (по причине снижения растворимости углерода в феррите с понижением температуры - линия PQ)
Цементит - неустойчивая метастабильная фаза. При нагреве и длительной выдержке цементит распадается на феррит (альфа-железо) и графит (Fe 3 C -> 3Fe + C).

4. Графит – чистый углерод с гексагональной слоистой структурой. Графит очень мягок (HB = 3) и обладает низкой прочностью. В чугунах и графитизированной стали содержится в виде включений различных форм (пластинчатой, хлопьевидной, шаровидной). С изменением формы графитовых включений меняются механические и технологические свойства сплава.

Помимо четырех вышеназванных фаз в струтуре сплавов железа с углеродом выделяют еще две самостоятельные структурные составляющие: перлит и ледебурит.

5. Перлит (П) – механическая смесь феррита и цементита, содержащая 0,8% углерода.
Перлит образуется из аустенита при охлаждении его до температуры ниже 727 °С. Таким образом, перлит является эвтектоидом . Перлит может быть пластинчатым и зернистым (глобулярным), что зависит от формы цементита и определяет механические свойства перлита. При комнатной температуре зернистый перлит имеет предел прочности 800 МПа, относительное удлинение 15%, твердость HB = 160.

6. Ледебурит (Л) – механическая смесь аустенита и цементита (Л = А+ Ц), содержащая 4,3% углерода.
Ледебурит образуется из жидкого расплава при температуре 1147 °С. Таким образом, ледебурит по своей сути является эвтектикой . Ледебурит образуется при затвердевании жидкого расплава при 1147 °С. Ледебурит имеет твердость HB = 600-700 HB и большую хрупкость. Ледебурит наблюдается в структуре чугунов, в сталях он образовывается только при большом количестве легирующих элементов и содержании углерода более 0,7%.
При охлаждении ледебурита до температуры в 727 °С входящий в его состав аустенит становится неустойчивым и распадается, превращаясь в перлит. Таким образом, при температуре менее 727 °С вплоть до 20 °С ледебурит представляет собой механическую смесь перлита с цементитом.

Феррит Аустенит Цементит Графит Перлит Ледебурит
Сущность твердый раствор внедрения углерода в альфа-железе твердый раствор внедрения углерода в гамма-железе химическое соединение железа с углеродом чистый углерод механическая смесь феррита и цементита механическая смесь аустенита и цементита
Обозначение Ф или -Fe(C) А или -Fe(C) Ц или Fe 3 C Г П = Ф + Ц =
Fe ? (C) + Fe 3 C
Л = А + Ц =
Fe ? (C) + Fe 3 C
Твердость HB 80-100 160-200 800 3 160 600-700
Содержание углерода до 0,02% до 2,14% 6,67% 100% 0,8% 4,3%

Фазы и структурные составляющие сплавов железа с углеродом


Помимо перечисленных структурных составляющих, в железоуглеродистых сплавах могут быть нежелательные неметаллические включения: окислы, нитриды, сульфиды, фосфиды – соединения с кислородом, азотом, серой и фосфором.

ПЕРЛИТ – структурная составляющая в углеродистых и легированных сталях и чугунах, возникающая при эвтектоидном превращении (см МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ) согласно диаграмме состояния железо – углерод . Перлит состоит из двух фаз – феррита и цементита , феррит – железо с очень малым количеством углерода (до 0,03%), а цементит – химическое соединение Fe 3 C, содержащее по массе 6,67%С. Среднее содержание углерода в перлите – 0,8%С, а сталь с целиком перлитной структурой, содержащая 0,8% углерода, называется эвтектоидной. При содержании углерода менее 0,8% сталь состоит из перлита и феррита, если углерода более 0,8% – из перлита и, в соответствии с диаграммой состояния железо – углерод.

При металлографическом исследовании изучается срез поверхности металла (металлографический шлиф), который подвергается шлифовке, полировке и химическому травлению специально подобранными реактивами. Химическая активность цементита больше, чем феррита, поэтому под микроскопом сильно протравленные участки цементита имеют черный цвет, а участки феррита сохраняют светлый цвет.

Перлит обычно имеет пластинчатую структуру, каждое зерно перлита состоит из параллельных пластинок феррита и цементита шириной в десятые доли мкм. Длина пластинок соответствует размеру зерен металла, и пластинки идут от одной границы зерна к другой. Если такая объемная пластинчатая структура пересекается плоскостью шлифа и подвергается травлению, то на ее поверхности возникает полосчатая структура из светлых полосок феррита и тонких полосок цементита. При различных термообработках ширина полосок (межпластиночное расстояние) может быть различным, ширина полосок цементита в 7 раз меньше, чем полосок феррита. При длительной выдержке при высоких температурах зерна феррита и цементита могут переходить из пластинчатой формы в округлую, и на металлографическом шлифе наблюдаются мелкие, темные, округлые зерна цементита на фоне крупных зерен феррита.

Перлит – продукт эвтектоидного превращения высокотемпературной фазы – аустенита при термической обработке сплавов. Аустенит при охлаждении при температуре 723° С распадается на феррит и цементит. Перлитное превращение всегда начинается на границах зерен аустенита. Чтобы возникли частицы новой фазы, нужно создать зоны пониженной и повышенной концентрации углерода. Исходный аустенит содержит 0,8% углерода, а в результате превращения образуется феррит, практически не содержащий углерода, и цементит с 6,67% углерода. Для объяснения этих процессов предложен флуктуационный механизм, согласно которому атомы углерода с большой диффузионной подвижностью при высоких температурах, могут создавать зоны с повышенной концентрацией углерода. Этот процесс является энергетически выгодным, и зародыш цементита вырастает до критического размера.

Феррит (от лат. ferrum – железо), структурная составляющая сплавов железа, представляющая собой твёрдый раствор углерода и легирующих элементов в a-железе. Кристаллическая решётка – объёмноцентрированный куб (ОЦК). Растворимость углерода в Феррит 0,02–0,03% (по массе) при 723 °С, а при комнатной температуре 10-6–10-7%. Растворимость легирующих элементов может быть весьма значительной или неограниченной. Легирование Феррит в большинстве случаев приводит к его упрочнению. Нелегированный Феррит относительно мягок, пластичен, сильно ферромагнитен до 768–770 °С. Микростроение, размеры зерна и субструктура Феррит зависят от условий его образования при полиморфном g ® a-превращении. При небольшом переохлаждении образуются приблизительно равноосные, полиэдрические зёрна; при больших переохлаждениях и наличии легирующих элементов (Cr, Mn, Ni) Феррит возникает по мартенситному механизму и вследствие этого упрочняется. Укрупнение зёрен аустенита часто приводит к образованию при охлаждении видманштеттова Феррит (см. Видманштеттова структура), особенно в литых и перегретых сталях. Выделение доэвтектоидного Феррит происходит преимущественно на границах аустенитных зёрен. При температурах выше 1390 °С в железоуглеродистых сплавах образуется твёрдый раствор углерода в d-железе, имеющий также кристаллическую решётку (ОЦК); растворимость углерода в d-железе 0,1%. Эту фазу можно рассматривать как высокотемпературный Феррит См. также Железоуглеродистые сплавы.

Цементит , карбид железа Fe3C, фазовая и структурная составляющая железоуглеродистых сплавов. Цементит имеет орторомбическую кристаллическую решётку, очень твёрд и хрупок, слабо магнитен до 210 °С. Цементит - метастабильная фаза; образование стабильной фазы - графита во многих случаях затруднено. Цементит выделяется из расплава, из аустенита и феррита. В зависимости от условий кристаллизации и последующей обработки Цементит может иметь различную форму - равноосных зёрен, сетки по границам зёрен, пластин, а также видманштеттову структуру. Цементит - составная часть структурных составляющих стали и чугуна - ледебурита, перлита, бейнита, сорбита отпуска.

Аустенит , одна из структурных составляющих железоуглеродистых сплавов, твёрдый раствор углерода (до 2%)и легирующих элементов в железе (см. Железо). Аустенит получил название по имени английского учёного У. Робертса-Остена (W. Roberts-Austen, 1843-1902). Кристаллическая решётка - куб с центрированными гранями. Аустенит немагнитен, плотность его больше, чем других структурных составляющих стали. В углеродистых сталях и чугунах Аустенит устойчив выше 723°C. В процессе охлаждения стали Аустенит превращается в другие структурные составляющие. В железоуглеродистых сплавах, содержащих никель, марганец, хром в значительных количествах, Аустенит может полностью сохраниться после охлаждения до комнатной температуры (например, нержавеющие хромоникелевые стали). В зависимости от состава стали и условий охлаждения Аустенит может сохраниться частично в углеродистых или легированных сталях (т. н. остаточный Аустенит).

Мартенсит , структура кристаллических твёрдых тел, возникающая в результате сдвигового бездиффузионного полиморфного превращения при охлаждении (см. Мартенситное превращение). Назван по имени немецкого металловеда А. Мартенса (A. Martens; 1850-1914). В результате деформации решётки при этом превращении (так называемого кооперативного сдвига) на поверхности металла появляется рельеф; в объёме же возникают внутренние напряжения и происходит пластическая деформация, которые и ограничивают рост кристалла. Скорость роста достигает 103 м/сек и не зависит от температуры, поэтому скорость образования Мартенсит обычно лимитирует зарождение кристаллов. Противодействие внутренних напряжений смещает зарождение кристаллов много ниже точки термодинамического равновесия фаз и может остановить превращение при постоянной температуре; в связи с этим количество возникшего Мартенсит обычно растет с увеличением переохлаждения. Поскольку упругая энергия должна быть минимальной, кристаллы Мартенсит принимают форму пластин (на шлифе - иголок), правильно ориентированных относительно исходной решётки. Внутренние напряжения снимаются также пластической деформацией, поэтому кристалл содержит много дислокаций (до 1012 см-2) либо разбит на двойники толщиной 10-100 нм (100-1000). Внутризёренные границы и дислокации упрочняют мартенсит. Мартенсит - типичный продукт низкотемпературных полиморфных превращений в чистых металлах (Fe, Со, Ti, Zr, Li и др.), в твёрдых растворах на их основе, в интерметаллидах (например, CuZn, Cu3Al, NiTi, V3Si, AuCd).

Мартенсит в стали - пересыщенный раствор Fe-C, получающийся при закалке из аустенита. Упорядоченное размещение атомов углерода (в результате мартенситного сдвига) превращает объёмноцентрированную решётку a-железа из кубической в тетрагональную. Её искажения около внедрённых атомов вызывают упрочнение. Тетрагональность и упрочнение растут с концентрацией углерода (твёрдость - до 1000 HV). Углеродистый Мартенсит - основная структурная составляющая большинства высокопрочных сталей. Концентрация углерода в твёрдом растворе и субзёренная структура Мартенсит изменяются при отпуске, используемом для повышения пластичности стали. Углерод - важнейший фактор прочности Мартенсит в стали; прочность безуглеродистой мартенситно-стареющей стали обусловлена выделениями интерметаллидов при старении (см. Старение металлов). Физическая природа Мартенсит Fe-С как раствора внедрения, происхождение его высокой прочности, сущность механизма и закономерности кинетики образования Мартенсит установлены Г. В. Курдюмовым.



mob_info