Полистирол: что это и свойства такого материала. Разностороннее применение листового полистирола Ударопрочный полистирол применение

В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.

Общая характеристика

Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН 2 СН(С 6 Н 5)] n . В сокращенном варианте она выглядит так: (C 8 H 8) n . Сокращенная формула полистирола встречается чаще.

Химические и физические свойства

Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.

Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.

Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится - на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.

Основные свойства полистирола:

  1. Плотность - 1050-1080 кг/м 3 .
  2. Минимальная рабочая температура - 40 градусов мороза.
  3. Максимальная рабочая температура - 75 градусов тепла.
  4. Теплоемкость - 34*10 3 Дж/кг*К.
  5. Теплопроводность - 0,093-0,140 Вт/м*К.
  6. Коэффициент термического расширения - 6*10 -5 Ом·см.

В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.

Эмульсионный (ПСЭ)

Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.

Процесс происходит следующим образом. В реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.

Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.

Суспензионный (ПСС)

Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации. Процесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.

Блочный (ПСМ)

Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.

Применение полистирола

Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).

Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы - сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы - потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.

Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.

Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».

Преимущества

Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный - оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.

Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.

Недостатки

Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.

Переработка

Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.

Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:

  1. Утилизация промышленных отходов, которые были сильно загрязнены.
  2. Переработка технологических отходов методами литья, экструзии и прессования.
  3. Утилизация изношенных изделий.
  4. Утилизация смешанных отходов.

Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.

Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.

Сжигание

При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С 8 Н 8) n + О 2 = СО 2 + Н 2 О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.

Читая различную информацию о современных строительных материалах, часто приходится сталкиваться со словом полистирол. Применяя новые технологии в процессах производства, из него получают пенопласты. Все эти материалы находят широкое применение во многих сферах жизнедеятельности, поэтому стоит узнать более подробно, что представляет собой полистирол и как он используется, о его свойствах и характеристиках.

Полистирол относится к группе синтетических полимеров класса термопластов, продукт получают в промышленности полимеризацией стирола. Полистирол - твердое и бесцветное стеклоподобное вещество, которое пропускает до 90% лучей видимого спектра, его плотность 1,05г/м 3 , имеет регулярную цепь строения.

Полимер обладает слабой полярностью, имея высокие диэлектрические свойства, они мало зависимы от частоты тока и температур. Он растворим в кетонах, ароматических углеводородах, альдегидах и эфирах, но не растворяется в спиртах, очень устойчив к кислотам, щелочам и воде. Полимер легко формируется и окрашивается, легко обрабатывается механическими способами, хорошо склеивается, он обладает высокой влагостойкостью и морозостойкостью, низким водопоглощением. В производстве его получают 3 способами:

  1. Эмульсионный
  2. Суспензионный
  3. Блочный.

Наиболее устаревший способ получения эмульсионный, поскольку он не нашел своего применения в производстве. Для того чтобы получить полистирол таким методом, необходимо иметь воду, стирол, инициатор полимеризации и эмульгатор, реакция которых происходит при температуре +85 +95 о С. Весь процесс заканчивается, когда свободного стирола остается меньше чем 0,5%. Такой метод дает возможность получить полистирол с повышенной молекулярной массой.

Метод суспензионный производится по периодической схеме в реакторах с теплоотводящей рубашкой и мешалкой, применяя эмульсию, стабилизатор и инициатор полимеризации. В ходе процесса температура постепенно повышается до +130 о С под давлением. Готовый продукт промывают и сушат. Этот метод также почти не используется, поскольку устарел, но его применяют для получения пенополистирола.

Наиболее эффективным является третий способ, он почти безотходный, поэтому нашел применение в производстве полистирола. Используются две схемы -полной и неполной конвенции для общего назначения полистирола. Полимеризация происходит в среде бензола постадийно, начиная с температуры +80 о С постепенно доведя массу до +220 о С, пока стирол не превратится в полистирол на 80-90%. Готовый продукт отличается стабильными параметрами и высокой чистотой.

Применение

Выпускается полимер в виде прозрачных гранул , которые имеют цилиндрическую форму. Они перерабатываются методом литься под давлением или экструзии, при температуре +190 +230 о С. На основе полистирола базируется огромное количество пластиков, благодаря простоте полимера, его невысокой цене, большому ассортименту марок.

Из полистирола научились изготавливать массу самых необходимых предметов, которые нашли применение в повседневной жизни. Все изделия совершенно безвредны для здоровья людей, в быту они нас постоянно окружают - одноразовая посуда игрушки для детей, упаковка.

В строительстве полистирол нашел очень большое применение, на его основе производятся теплоизоляционные материалы - плиты, сэндвич-панели, несъемная опалубка и др. Также производится и отделочный декоративный материал для облицовки - потолочный багет и плитка декоративная.

В медицинской промышленности полимер также применим, из него производят некоторые части в системах переливания крови, одноразовые инструменты. Вспененный полистирол также актуален для подготовки и очистке сточных вод.

В пищевой промышленности используется упаковочный материал , который также производится из полистирола. Есть и ударопрочный вид полимера, он стал незаменим для бытовой техники, электроники.

Физические свойства полистирола

  1. Плотность - 1050-1080кг/м 3
  2. Насыпная плотность гранул - 550-560кг/м 3
  3. Усадка линейная в форме - 0,4-0,8%
  4. Нижний предел рабочей температуры - (-40 о С), верхний предел - (+75 о С)
  5. Электрическая прочность с частотой 50Гц - 20-23кВ/мм
  6. Удельное электрическое сопротивление поверхностное - 10 16 Ом, объемное, под напряжением 1 мин - 10 17 Ом-см, под напряжением 15 мин - 10 15 Ом-см.
  7. Коэффициент линейного расширения термического - 6х10 -5 , 7х10 -5 градус -1
  8. Теплопроводность - 0,093-0,140Вт/м*К
  9. Теплоемкость - 34х10 3 Дж/кг*К
  10. Диэлектрическая проницаемость - 2,49-2, 6
  11. Тангенс угла при диэлектрических потерях с частотой 1МГц составляет - 3-4Х10-4.

Свойства полимера

Полистирол - термопластическая пластмасса в форме плит, может иметь гладкую поверхность или со штампованным рисунком. Полимер белого цвета можно назвать хорошей альтернативой пластику ПВХ, а прозрачный вариант - оргстеклу. Он стал популярным благодаря таким свойствам, как гибкость и легкость в обработке, он обладает также высокой ударопрочностью. Он отлично обрабатывается и формуется, препятствует потере тепла, но главным его достоинством является низкая стоимость.

Его можно также назвать идеальным заменителем стекла, поскольку он прозрачный и легкий в обработке. Он находит применение во внутренней и наружной частях помещений, благодаря своим физическим и химическим свойствам. Прозрачный полимер часто используется для остекления зданий, отлично пропускает свет, но боится прямых солнечных лучей. Со временем УФ приводит к разрушению материала, он желтеет, снижаются его характеристики прочности.

Полистирол стал уже давно применяться, как основа для производства пенопластов и других материалов на их основе, путем нагревания смеси материала с преобразователями. В процессе производства получается вспученный полистирол, а после остывания материал превращается во вспенено застывшую массу жесткой структуры с плотными ячейками, заполненными воздухом. 98% готового материала составляет воздух, а всего 2% приходится на сам полимер .

Такое качество, как низкая теплопроводность сделала вспененный полимер незаменимым материалом в строительных работах. Его стали широко использовать для утепления стен, кровли, пола и потолков в зданиях разного типа. С утеплителем просто работать, его можно порезать обычным острым ножом, легко монтировать, поскольку он имеет незначительный вес. Большинство потребителей оценили материал по достоинству, их привлекает его устойчивость к процессам гниения и образования грибков, стойкость к агрессивной среде, воздействию микроорганизмов.

Но у вспененного полистирола есть и минусы, о которых также нужно сказать - экологическая небезопасность, недолговечность и пожароопасность.

Заключение

Сам полистирол не наносит вреда окружающей среды, но некоторые виды материалов на его основе могут быть опасны для здоровья , он является горючим материалом. В зависимости от свойств и назначения полистирола, установлены марки для общего назначения, поэтому потребитель, пользуясь этими обозначениями, может узнать о характеристиках и применении определенной марки полимера.

Министерство образования Российской Федерации и науки

Российской Федерации

Государственное образовательное учреждение высшего

профессионального образования

“Алтайский Государственный Технический Университет

им. И.И. Ползунова”

Реферат.

По дисциплине «органическая химия» на тему:

«Полистирол (поливинилбензол)»

Выполнила студентка гр. ПКМ-71:

Бархатова Л. Н.

Проверила старший преподаватель

кафедры ФиТКМ: Арсентьева С.Н.

Барнаул 2008г.

Введение, общая характеристика и классификация полимеров

1. Историческая справка

2. Описание полистирола

3. Основные свойства

3.1.Физические свойства

3.2.Химические свойства

4. Получение

5. Надмолекулярная структура, конформация, конфигурация

6. Способы отверждения

7. Применение в промышленности

Заключение

Список литературы


Введение

Общая характеристика и классификация полимеров

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяю­щихся звеньев – мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n= от 10 до 20, вещества представляют собой легкие масла. С возрастанием n увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 10 4 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах от 10 3 до 3×10 5 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Кристалличность даже в лучшем случае оказывается несовершенной .

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы: синтетические полимеры (искусственные), природные органические и природные неорганические полимеры.

Синтетические полимеры получаются путем ступенчатой или цепной полимеризации низкомолекулярных полимеров.

Природные неорганические полимеры – это например расплав магмы, оксид кремния.

Природные органические полимеры образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфарой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров – материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ – неотъемлемая и существенная часть современнойНТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рисунок 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-ноль, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют тер­мореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме (рисунок 2).

Рисунок 2 – Реакции образования полимеров: а) – полимеризация, б) - поликонденсация

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент - реакцию полимеризации, и благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем – посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рисунок 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах .

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.


1. Историческая справка

Промышленность ластмасс зародилась на рубеже XX века. Легко полимеризующийся стирол и его стеклообразный твердый полимер сразу же привлекли внимание. Основы химии и техноло­гии производства полистирола заложили Остромысленский и Штау-дингер. Последний предложил цепной механизм образования макромолекул полистирола.

Первый патент на получение полистирола (способом термической спонтанной полимеризации в массе) был взят в Германии в 1911г. Там же в 1920 г. началось промышленное производство полимера. В 1936г. уже производилось 6000 т/год.

За пределами Германии рост производства полистирола долгое время сдерживался высокой ценой на мономер. Стимулом к бурному развитию послужило создание в США во время второй мировой войны крупнотоннажного производства бутадиен-стирольного каучукачто, естественно, привело к снижению цен на стирол. После Войныпроизводство полистирола и сополимеров стирола, содержащихболее 50 процентов стирола по составу (в отличие от бутадиен-стирольного каучука, где стирола около 30 процентов), развивалось самостоятельно. Разработка таких эффективных продуктов; как пенополистирол, ударопрочные полимеры стирола, АБС-пластики, позволила полистирольным пластикам в целом занять третье место в мировом производстве пластмасс после полиэтилена и поливинилхлорида.

1.Характеристика исходного вещества

Полистирол и ударопрочный полистирол получают полимеризацией стирола в массе.

Стирол(винилбензол, фенилэтилен), - бесцветная жидкость со своеобразным запахом.

Некоторые физические свойства:


Стирол смешивается с большинством органических растворителей, с низшими спиртами, ацетоном, эфиром, сероуглеродом; в многоатомных спиртах растворим ограниченно. В смеси с воздухом в объемных концентрациях 1,1 – 6,1% образует взрывоопасные смеси. Стирол легко полимеризуется и сополимеризуется с большинством мономеров по радикальному и по ионному механизмам. В промышленности стирол получают несколькими способами:

1. Дегидрированием этилбензола в присутствии окисных катализаторов следующего

состава: (-18,4 %; MgO-72,0 %; 2-4,6 %)

2. В присутствии п- дивинилбензола при полимеризации стирола происходит сшивание

линейных макромолекул ПС, в результате чего получается неплавкий и нерастворимый продукт сетчатого строения, который не поддаѐтся переработке. Нежелательной примесью является этилбензол, который при выделении из ПС вызывает его растрескивание и потускнени

3.Из бензола и этилена жидкофазным методом в присутствии AlCl3 в качестве катализатора.

4.Реакция алкилирования протекает не только с образованием моноалкилбензола, но и

полиалкилбензолов. Очистку сырого этилбензола производят ректификацией, особенно

важно из него удалить п- дивинилбензол.

Описание полистирола

Полистирол – термопластичный полимер преимущественно линейного строения с формулой[-СН 2 -С(С 6 Н 5)Н-] n и структурной формулой:

Полистирол – прозрачное стеклообразное вещество, молекулярная масса 30-500 тыс., плотность 1,06 г/см 3 (20 °С), температура стеклования 93°С.

Для полистирола характерно коптящее пламя с цветочным сладковатым запахом (Этот запах корицы обычно можно обнаружить, уколов исследуемый предмет раскаленной иглой). Если к тому же предмет падает на пол с металлическим звоном то, скорее всего полистирол.

Полистирол – дешёвый крупнотоннажный термопласт; характеризуется высокой твёрдостью, хорошими диэлектрическими свойствами, влагостойкостью, легко окрашивается и формуется, химически стоек, растворяется в ароматически и хлорированных алифатических углеводородах. Лучшими эксплуатационными свойствами обладают различные сополимеры стирола.

Получение полистирола

В присутствии п- дивинилбензола при полимеризации стирола происходит сшивание

линейных макромолекул ПС, в результате чего получается неплавкий и нерастворимый

продукт сетчатого строения, который не поддаѐтся переработке. Нежелательной примесью

является этилбензол, который при выделении из ПС вызывает его растрескивание и

потускнение.

Затем активные частицы активируют следующие молекулы стирола II соединяются с ними, образуя цепь (следующая стадия):

Рост цепи прекращается, если соединяются две растущие цепи или если к растущей цепи присоединяется другой остаток, например фрагмент катализатора. Эта стадия называется обрывом цепи:

Упрощенная формула полистирола имеет вид:

2.Основные реакции синтеза

Синтез ВМС осуществляют путем реакций полимеризации и поликонденсации. Различие этих процессов заключается в том, каким образом происходит формирование макромолекул. Основным отличием является то, что в поликонденсации есть молекулы, которые имеют по две функциональные группы, в результате выделяется молекула воды.

1. Реакция полимеризации – рост каждой макромолекулы происходит в результате

последовательного присоединения молекул мономера к активному центру, локали-

зованному на конце растущей цепи. При этом реакционный центр регенерируется в

каждом акте роста. Применительно к непредельным мономерам процесс полимери-

зации можно выразить следующей схемой:

2. В поликонденсации рост макромолекул происходит путем химического взаимодей-

ствия исходных молекул друг с другом, с реакционноспособными группами n-

меров, накапливающихся в ходе реакции конденсации, а также молекул n-меров

между собой. В поликонденсации реакционный центр гибнет в каждом акте роста,

а развитие цепи происходит за счет реакции замещения, сопровождающейся или не

сопровождающейся отщеплением низкомолекулярных продуктов:

СИНТЕЗ ПОЛИСТИРОЛА В ПРИСУТСТВИИ ДИ-ТРЕТ.БУТИЛАМИНА И ГИДРОПЕРОКСИДА ТРЕТИЧНОГО БУТИЛА

Псевдоживая полимеризация по механизму обратимого ингибирования явля-

ется одним из наиболее значительных явлений в химии высокомолекулярных со-

единений последних десятилетий. Анализ реакционной способности

исследуемых соединений и известных литературных данных позволяет

обоснованно предположить протекание в процессе полимеризации стирола сле-

дующих реакций:

Увеличение скорости полимеризации стирола в присутствии ди-

трет.бутиламина по сравнению с процессом без добавки может быть связано с

образованием в системе алкильных радикалов.

3. Структура полимера

Первичные ламели имеют значительную поверхностную энергию, поэтому происходит их агрегация, приводящая к образованию монокресталов - более сложных надмолекулярных образований. При кристаллизации из расплава или концентрированного раствора полимера наиболее общего типа вторичного кристаллического образования является сферолит (рисунок 3), имеющий кольцевую или сферическую форму и достигающую гигантских размеров до 1см. В радикальных или сферических сферолитах каркас формируется из ленточных, кристаллических образований направленных от центра к периферии .

Рисунок 3 – Надмолекулярная структура полимеров:

г) сферолитная лента (изотактический полистирол)

Конфигурация макромолекулы

Конфигурация – порядок расположения химических связей, соединяющих атомы или

атомные группы в макромолекуле.

Конфигурация формируется в процессе синтеза и не может быть нарушена иным обра-

зом, как разрушение химических связей.

Конформация макромолекул

Конформация – это форма, которую приобретают макромолекулы данного конфигураци-

онного состава под действием теплового движения или физических полей.

Виды конформации:

· Конформация транс-зигзаг

· Конформация "клубок"

· Конформация "глобула"

· Конформация "спираль"

· Конформация "складка"

Полученные обычным способом поливинилхлорид, поливинилфторид и поли­стирол обладают гораздо меньшей степенью кристалличности и име­ют более низкие температуры плавления; у этих полимеров физиче­ские свойства сильно зависят от стереохимической конфигурации. Полистирол, полученный методом свободнорадикальной полимери­зации в растворе, является атактическим. Этот термин означает, что если ориентировать углеродные атомы полимерной цепи, придав ей, правильную зигзагообразную форму, то фенильные боковые группы окажутся распределенными случайным образом по одну и по другую сторону вдоль цепи (как это показано на рисунке 4). При полимери­зации стирола в присутствии катализатора Циглера образуется изотактический полистирол, отличающийся от атактиче-ского полимера тем, что в его цепях все фенильные группы расположены по одну или по другую сторону цепи. Свойства атактическо­го и изотактического полимеров различаются весьма существенно. Атактический полимер можно формовать при значительно более низких температурах, и он растворим в большинстве растворителей намного лучше изотактического. Существует много других типов стереорегулярных полимеров, один из которых назван синдиотакти ческим; в цепях этого полимера боковые группы расположены по­переменно то по одну, то по другую сторону цепи, как это показано на рисунке 4 .

Рисунок 4 – Конфигурации атактического, изотактического и синдиотактического полистирола

4. Молекулярная масса. Молекулярно- массове распределение (ММР)

Молекулярная масса является мерой длины молекулы для полимеров

M n = m 0 * P n

m0 – масса одного составного звена

Pn – степень полимеризации

Молекулярная масса полистирола равно примерно 30-500 тыс.

Молекулярно- массовое распределение (ММР)

Вводят функции распределения по молекулярным массам

Существуют дифференциальные и интегральные функции распределения.

Их, в свою очередь, подразделяют на числовые и весовые.

Дифференциальное распределение - описывает долю от общего числа ве-

щества или от общего веса макромолекул с ММ в интервале от М i до M i +dM.

Интегральное распределение – долю от общего количества/веса вещества,

приходящуюся на молекулы с ММ в интервале от массы мономера до М i (массы

полимера на i-степени превращения)

Числовая ММР – отношение числовой доли dn молекул, имеющих массу М в ин-

тервале M+dM, к значению этого интервала:

Аналогично, весовая ММР:

Для промышленного полистирола ММР будет равен 2 – 4 (в зависимости от условий получения)

Для полистирола существуют критические величины молекулярной массы выше которых прочность при растяжении и относительное удлинение мало зависят от молекулярной массы.Молекулярная масса и ММР полимера определяются температурой и мало зависят от степени превращения мономера. Это объясняется превалирующим влиянием реакции передачи цепи на мономер из всех реакций ограничения роста цепей. При изотермическом режиме удается получить полистирол с найболее узким ММР. Регулирование молекулярной массы и ММР позволяет получить полистирол с заданным индексом расплава.

5. Химические превращения полимера

В химии полимеров различают следующие типы химических реакций:

1. Реакции деструкции

2. Реакции сшивания

3. Реакции функциональных групп

Реакции деструкции

Реакциями деструкции называю реакции, протекающие с разрывом химических связей в главной цепи макромолекулы. В зависимости от типа химической связи (Ковалентной или ионной) возможны три механизма деструкции полимеров: радикальный, ионный и ионно-радикальный. При наличии ковалентной связи между атомами главной цепи разрыв макромолекулы протекает с образованием свободных макрорадикалов.

В зависимости от природы агента, вызывающего разрыв связей в цепи, различают физическую и химическую деструкцию. Физическая деструкция подразделяется на термическую, механическую, фотохимическую и деструкцию под влиянием ионизирующего излучения, Химическая деструкция протекает под действием различных химических агентов. Наиболее важными видами химической деструкции являются окислительная деструкция, гидролиз, алкоголиз, ацидолиз, аминолиз.

Реакции сшивания

Реакциями сшивания (структурирования) называют реакции образования поперечных химических связей между макромолекулами, приводящие к получению полимеров сетчатого строения. Реакции могут протекать в процессе синтеза полимеров, а также при переработке уже полученных линейных полимеров. При синтезе полимеров сшивание цепей в большинстве случаев не желательно, так как при Этом получаются нерастворимые и не плавкие продукты, которые трудно извлечь из реактора. Поэтому полимеризации и поликонденсации обычно получают полимеры линейного или разветвленного строения. При изготовлении из таких полимеров изделий часто специально проводят реакции сшивания(структурирования). В резиновой промышленности эти реакции называются вулканизацией, в промышленности пластических масс – отверждением. Такие реакции могут протекать при нагревании или при действии ионизирующих излучений. Сшивание полимеров под влиянием ионизирующих излучений называется радиационным сшиванием.

Реакции функциональных групп

Многие полимеры нельзя получить путем полимеризации или поликонденсации непосредственно из низкомолекулярных соединений потому, что исходные мономеры неизвестны, или потому что они не полимеризуются. Поэтому особое значение приобретает синтез полимеров из других высокомолекулярных соединений, содержащих реакционноспособные группы. Для проведения этого синтеза условия реакции должны подбираться так, чтобы предотвратить возможность деструкции молекулярных цепей. Тогда в результате химических превращений происходит изменение химического состава полимера без существенного уменьшения степени полимеризации. Такие реакции были названы Штаундингером Полимераналогичными превращениями. Очень интересна реакция получения высокомолекулярных соеденений, содержащих щелочные и щелочноземельные металлы, например синтез поли-n-литийстирола. Сначала изотактический кристаллический полистирол превращают в поли-n-иодстирол, который, реагируя с бутиллитием, образует поли-n-литийстирол:

Таким образом, полимераналогичные превращения дают возможность создавать новые классы полимеров и в широком диапазоне изменять свойства и области применения готовых продуктов.

6. Деструкция и старение

Полистирол стоек к действию щелочей и галогеноводных к-т, разрушается конц. азотной и ледяной уксусной кислотами. Легко окрашивается в различные цвета.

Термическая деструкция полистирола протекает с заметной скоростью при температурах несколько выше 260 °С, термоокислительная деструкция начинается около 200 °С; процессы сопровождаются выделением мономера, пожелтением и снижением вязкости расплаваостатка. Механохимическая деструкцияв присутствии следов кислорода происходит уже при 160 °С; она также приводит к снижению вязкости и изменению ММР материала. Под действием УФ- лучей происходит помутнение и пожелтение полистирола, увеличивается его хрупкость. Для фотостабилизации полистирола используют люминофорные красители и другие стабилизаторы, которые вводят в полистирол при гранулировании.

7. Технологические свойства и области применения полимера

Существуют 2 основных вида полистирола полистирол общего назначения (GPPS), ударопрочный полистирол (HIPS)

Прозрачный полистирол (GPPS - General Purpose PolyStyrene) -неударопрочный материал. Используется в основном для внутреннего остекления, служит экономичной альтернативой оргстеклу.

HIPS (High Impact Polystyrene) обладает повышенной ударопрочностью, благодаря добавкам из бутадиенового или других специальных каучуков, которые обладают ударной вязкостью до 60-70 кДж/м 2 . Его область применения довольна широка – наружная реклама, торговое оборудование, детали холодильников и так далие.

Полистирол общего назначения (GPPS)

Материал используется в основном для внутреннего остекления, служит экономичной альтернативой оргстеклу. Основные преимущества: влагоустойчивы, долговечны легкость в обработке, обладают великолепной оптической прозрачностью – 94 %, имеют хорошую гладкую поверхность, имеют низкую плотность, устойчивы к химическим воздействиям, обладают высокой жесткостью.

Экструдированный полистирол изготовляется в виде прозрачных, молочных, дымчатых, цветных листов. Изготавливаются антибликовые и декоративные листы с разнообразной фактурой. По специальному заказу листы полистирола могут производиться без УФ – стабилизации. Такие листы можно использовать в контакте с пищевыми продуктами, поскольку они отвечают всем действующим правилам использования материала в контакте с продуктами питания.

Прозрачный полистирол – хрупкий, ломкий и неударопрочный. В связи с этим возникают осложнения при хранении и транспортировке изделий из него. Помимо этого, для достижения необходимого светорассеивания приходится использовать листы с рифленой поверхностью, что зачастую не соответствует современному дизайну. Существенным недостатком ПС является и его низкая устойчивость к воздействию УФ-излучения. Однако полистирол является очень экономичным материалом.

Типичное применение: декоративные перегородки и ширмы защитное покрытие изображений остекление душевых кабин ценники подставки производство светильников все виды остекления внутри помещения и др.

Полистирол ударопрочный ( HIPS )

Ударопрочный полистирол высококачественный листовой материал, производится для процессов термо – или вакуумного формования. HIPS используется в производстве наружной рекламы, деталей холодильников, сантехники, игрушек, пищевой упаковки и тому подобное. Поверхность материала может быть глянцевой, матовой, гладкой или тисненой, с зеркальной поверхностью, различных цветов. Возможно изготовление листов методом соэкструзии. Это позволяет соединить два слоя различных цветов или добавить верхний слой с глянцевой поверхностью.

Ударопрочный полистирол обладает определенной эластичностью и тем самым расширяет возможность его использования при изготовлении светотехнических изделий сложной конфигурации с глубокой вытяжкой. Коэффициент светопропускания (35–38 %) и белизна полностью соответствуют существующим в России стандартам на светотехнические изделия.

Основные преимущества: повышенная ударопрочность слабая чувствительность к надрезам легкость морозостойкость до –40°С влагостойкость отличная формуемость легкость в обработке химическая стойкость к кислотам и щелочам

В своем «родном» состоянии полистирол представляет собой довольно хрупкий материал, непригодный для многих задач. Поэтому в производстве в исходное сырье добавляют специальные добавки, повышающие ударную прочность и гибкость, и таким образом получают ударопрочный полистирол. Одной из разновидностей ударопрочного полистирола является фреоностойкий полистирол, применяемый в производстве холодильного оборудования. Структура поверхности: матовая с обеих сторон или с одной стороны глянцевая (верхний глянцевый слой получают путем соэкструзии с полистиролом обшего назначения), тисненная. При необходимости лист с одной стороны обрабатывается коронным разрядом, на лист наносится защитная термоформуемая пленка. При наружном применении добавляется УФ-стабилизатор, обеспечивающий защиту от пожелтения под воздействием УФ-излучения.

Полистирол светотехнический является одной из разновидностей ударопрочного полистирола, полностью заменяет акриловое стекло при изготовлении конструкций с внутренней подсветкой. В отличие от оргстекла имеет только одну глянцевую поверхность. Высокая популярность светотехнического полистирола обуславливается большей ударной прочностью (по сравнению с акрилом), легкостью обработки, стойкостью к окружающей среде и меньшей стоимостью.

Ударопрочный полистирол является более экономичным вариантом по сравнению с оргстеклом из-за низкой плотности, а так же возможностью применения более тонких (2-3 мм) листов благодаря повышенной ударопрочности по сравнению с оргстеклом (3-5 мм), что обеспечивает экономию в 2 раза, из расчета на 1 кв. м. светорассеивателя.

Катушки, кассеты и бобины для магнитофонной ленты, цоколи радиоламп, облицовочные плиты, шкалы приборов, скобы и хомуты для крепления кабелей, аккумуляторные банки, ручки инструментов и приборов, пленки, абажуры, детали клемм, футляры, принадлежности для бритья, игрушки, посуда, плитки для отделки мебели, пудреницы, крышки для банок и бутылок, коробки, детали электрических выключателей, авторучки – этот перечень изделий из полистирола можно было бы продолжать еще долго. Применение полистирола очень разнообразно - от пленки в конденсаторах толщиной 0,02 мм до толстых плит из пенополистирола, используемых в качестве изоляционного материала в холодильной технике.

8. Экологические проблемы вызванные использованием данного полимера. Предложения по регенерации и утилизации

Начиная с 1960-х годов мировое производство полимеров удваивается через каждые пять лет, и эти темпы роста в соответствии с прогнозом сохраняется до 1990г. Одним из сопутствующих эффектов бурного развития промышленности полимеров является одновременное увелечение количества полимерных отходов. Так, в ФРГ они составили в 1977г. 1,2 млн т, в США отходы полимеров в 1980 году достигли 6,4 млн тонн. Изделия из пластмасс имеют разные сроки службы:

Упаковка и фотопленка – 1 год

Обувь и строительные материалы – 2 года

Игрушки – 5 лет

Спортивные товары – 6 лет

Кабель – 15 лет

Детали машин, посуда, мебель – 10-20 лет

Основным источником загрязнения окружающей среды становятся изделия с коротки сроком службы, главным образом тара и упаковки. Угроза такого загрязнения постепенно становится глобальной экологической проблемой. Полимерные отходы ни гниют, не разлогаются и засоряют не только землю, но и реки и морские побережья.

До начала 1970-х годов уничтожению полимерных отходов препятствовала устойчивость большинства многотоннажных полимеров к действию природных факторов – микроорганизмов, солнечного света и воды. Именно эта деградационная устойчивость большинства пластмасс побудила ученых к созданию специальных био- и фоторазлагаемых, а также водорастворимых полимерных материалов.

Такие широко применяемые полимеры как полиэтилен, полипропилен, полистирол и поливинил хлорид, в отличии от природных целлюлозы и каучука, которые могут ассимилироваться бактериями и грибками в процессе энзимологических реакций, обладают почти абсолютной стойкостью к микроорганизмам. Попытки сделать их биоразлагаемыми путем модификации различными функциональными группами не дают желаемого результата. Оказалось что полиэтилен становится «по зубам» микроорганизмам только в том случае, когда его молекулярная массауменьшена в 30-40 раз, тоесть практически в виде олигомера.

Перспективным путем придания этим полимерам биоразлагаемости может быть введением в них наполнителей, которые при определенных условиях служат источником питания микроорганизмов. Присутствие таких наполнителей приводит к ухудшению стойкости полимера по отношению к внешним воздействиям, что в конечном итоге способствует деструкции полимерных цепей и ассимиляции образующихся олигомерных фрагментов бактериями и грибками.


Список использованной Литературы:

1. А.А Тагер «Физико-химия полимеров» издательство второе 1968 г.

2. Лосев И.П «Химия синтетических полимеров»

3. Малкин А.Я.Полистирол. Физ. хим. основы получения и переработки. – М.: Химия, 1975 – 263 с.

4. Лекционный материал по химии


1.Характеристика исходного вещества

2.Основные реакции синтеза

3. Структура полимера

4. Молекулярная масса. Молекулярно- массове распределение (ММР)

5. Химические превращения полимера

6. Деструкция и старение

7. Технологические свойства и области применения полимера

8. Экологические проблемы вызванные использованием данного полимера. Предложения по регенерации и утилизации


Национальный университет кораблестроения имени адмирала Макарова

Реферат на тему:


Выполнил студент группы 1161:

Бондарь Юрий Андреевич

Проверила:

Личко Елена Ивановна



mob_info