Биохимические (биологические) методы очистки. Очистка сточных вод биохимическими методами Биохимическая очистка сточных вод

→ Очистка сточных вод

Биохимические основы методов биологической очистки сточных вод


Биологические методы очистки сточных вод основываются на естественных процессах жизнедеятельности гетеротрофных микроорганизмов. Микроорганизмы, как известно, обладают целым рядом особых свойств, из которых следует выделить три основных, широко используемых для целей очистки:
1. Способность потреблять в качестве источников питания самые разнообразные органические (и некоторые неорганические) соединения для получения энергии и обеспечения своего функционирования.

2. Во-вторых, это свойство быстро размножаться. В среднем число бактериальных клеток удваивается через каждые 30 мин. По утверждению проф. Н.П. Блинова, если бы микроорганизмы могли беспрепятственно размножаться, то при наличии достаточного питания и соответствующих условий за 5 – 7 дней масса только одного вида микроорганизмов заполнила бы бассейны всех морей и океанов. Этого, однако, не происходит как из-за ограниченности источников питания, так и благодаря сложившемуся природному экологическому равновесию.

3. Способность образовывать колонии и скопления, которые сравнительно легко можно отделить от очищенной воды после завершения процессов изъятия содержавшихся в ней загрязнений.

В живой микробиальной клетке непрерывно и одновременно протекают два процесса – распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ – метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетеротрофных микроорганизмов являются углеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания.

Весь цикл взаимоотношений клетки с окружающей средой в процессе изъятия из нее и трансформации питательных веществ определяется и регулируется соответствующими ферментами. Ферменты локализуются в Цитоплазме и в различных субструктурах, встроенных в мембрану клетки, выделяются на поверхность клетки или в окружающую среду. Общее содержание ферментов в клетке достигает 40-60% от общего содержания в ней белка, а содержание каждого из ферментов может составлять от 0,1 до 5% от содержания белка. При этом в клетках может находиться свыше 1000 видов ферментов, а каждую биохимическую реакцию, осуществляемую клеткой, могут катализировать 50-100 молекул соответствующего фермента. Часть ферментов представляют собой сложные белки (протеиды), содержащие кроме белковой части (апофермента) небелковую часть (кофер-мент). Во многих случаях коферментами являются витамины, иногда -комплексы, содержащие ионы металлов.

Ферменты делятся на шесть классов по характеру реакций, катализирующих: окислительные и восстановительные процессы; перенос различных химических групп от одного субстрата к другому; гидролитическое расщепление химических связей субстратов; отщепление от субстрата химической группы или присоединение таковой; изменение в пределах субстрата; соединение молекул субстрата с использованием высокоэнергетических соединений.

Поскольку микробиальная клетка потребляет только растворенные в воде органические вещества, то проникновение в клетку нерастворимых в воде веществ, таких, например, как крахмал, белки, целлюлоза и др. возможно лишь после их соответствующей подготовки, для чего клетка выпускает в окружающую жидкость необходимые ферменты для гидролитического их расщепления на более простые субъединицы.

Коферменты определяют природу катализируемой реакции и по выполняемым функциям подразделяются на три группы:
1. Переносящие ионы водорода или электроны. Связаны с окислительно-восстановительными ферментами – оксидоредуктазами.
2. Участвующие в переносе групп атомов (АТФ – аденозинтрифос-форная кислота, фосфаты углеводов, СоА – коферменат А и др.)
3. Катализирующие реакции синтеза, распада и изомеризации углеродных связей.

Механизм изъятия из раствора и последующей диссимиляции субстрата носит весьма сложный и многоступенчатый характер взаимосвязанных и последовательных биохимических реакций, определяемых типом питания и дыхания бактерий. Достаточно сказать, что многие аспекты этого механизма не совсем ясны до сих пор, несмотря на его практическое использование, как в области биотехнологии, так и в области биохимической очистки воды от органических примесей в широком спектре схем его технологического оформления.

Наиболее ранняя модель процесса биохимического изъятия и окисления загрязнений основывалась на трех главных положениях: сорбционное изъятие и накопление изымаемого вещества на поверхности клетки; диффузионное перемещение через клеточную оболочку либо самого вещества, либо продуктов его гидролиза, либо гидрофобного комплекса образуемого гидрофильным проникающим веществом и белком-посредником; метаболическая трансформация поступивших внутрь клетки питательных веществ, обеспечивающая диффузионное проникновение вещества в клетку.

В соответствии с этой моделью считалось, что процесс изъятия питательных веществ из воды начинается с их сорбции и накопления на поверхности клетки, для чего требуется постоянное перемешивание биомассы с субстратом, обеспечивающее благоприятные условия для “столкновения”^ клеток с молекулами субстрата.

Механизм переноса вещества от поверхности клетки внутрь нее -эта модель объясняла либо присоединением проникающего вещества к специфическому белку-переносчику, являющемуся компонентом мембраны клетки, который после введения вещества внутрь клетки высвобождается и возвращается на ее поверхность для совершения нового “захвата” вещества и нового цикла переноса, либо непосредственным растворением этого вещества в веществе стенки и цитоплазматической мембраны, благодаря чему оно и диффундирует внутрь клетки. Процесс стабильного потребления вещества начинался лишь после некоторого “периода равновесия” вещества между раствором и клетками, объяснявшегося протеканием гидролиза и диффузионным перемещением вещества через клеточную оболочку до цитоплазматической мембраны, где сосредоточены различные ферменты. С началом метаболических превращений сорбционное равновесие нарушается, и концентрационный градиент обеспечивает непрерывность дальнейшего поступления субстрата в клетку.

На третьем же этапе происходят все метаболические превращения субстрата частично в такие конечные продукты, как диоксид углерода, вода, сульфаты, нитраты (процесс окисления органических веществ), частично в новые микробиальные клетки (процесс синтеза биомассы), если процесс трансформации органических соединений происходит в аэробных условиях. Если же биохимическое окисление протекает в анаэробных условиях, то в его процессе могут образовываться различные промежуточные продукты (возможно целевого назначения), СН4, NH3, H2S и пр. и новые клетки.

Эта модель, однако, не смогла объяснить некоторые кинетические особенности транспортных процессов переноса субстрата и, в частности, накопления субстрата в клетке против концентрационного градиента, являющегося наиболее частым результатом этих процессов и получившего название “активного” транспорта, в отличие от диффузионного переноса. Особенностью активных транспортных процессов является их стереоспе-Цифичность, когда близкие по химической структуре вещества конкурируют за общий переносчик, а не просто диффундируют в клетку под воздействием концентрационного градиента.

В свете современных взглядов модель перемещения субстрата через клеточную мембрану предполагает наличие в ней гидрофильного “канала”, через который внутрь клетки могут проникать гидрофильные субстраты. Однако в отличие от вышеописанной модели здесь осуществляется стереоспецифическое перемещение, достигаемое, вероятно, за счет “эстафетной” передачи молекул субстрата от одной функциональной группы к другой. Субстрат при этом, как ключ, открывает соответствующий для его проникновения канал (модель трансмембранного канала).

Вторая альтернативная модель может рассматриваться как комбинация первых двух с использованием их положительных свойств. В ней предполагается наличие гидрофобного мембранного переносчика, который путем последовательных конформационных изменений, вызываемых субстратом, проводит его с внешней на внутреннюю сторону мембраны (модель конформационной транслокации), где гидрофобный комплекс распадается. В данной интерпретации механизма транспорта субстрата через клеточную мембрану термин “переносчик” по-прежнему употребляется, хотя все чаще заменяется термином “пермеаза”, учитывающим генетическую основу его кодирования как мембранного компонента клетки для целей переноса вещества внутрь клетки.

Установлено, что в состав мембранных транспортных систем часто входит более одного белкового посредника и между ними может существовать разделение функций. “Связующие” белки идентифицируют субстрат в среде, подводят и концентрируют его на внешней поверхности мембраны и передают его “истинному” переносчику, т.е. компоненту, осуществляющему перенос субстрата через мембрану. Так, выделены белки, участвующие в “узнавании”, связывании и транспорте ряда Сахаров, карбоновых кислот, аминокислот и неорганических ионов в клетки бактерий, грибов, животных.

Превращение процесса переноса вещества в клетку в однонаправленный процесс “активного” транспорта, приводящий к повышению содержания питательных веществ в клетке против их концентрационного градиента в среде, требует от клетки определенных энергетических затрат. Поэтому процессы переноса субстрата из окружающей среды внутрь клетки сопряжены с протекающими внутри клетки процессами метаболического высвобождения заключенной в субстрате энергии. Энергия в процессе переноса субстрата расходуется на химическую модификацию либо субстрата, либо самого переносчика с тем, чтобы исключить или затруднить как взаимодействие субстрата с переносчиком, так и возврат субстрата диффузионным путем через мембрану обратно в раствор.

Современные воззрения на процессы биохимического изъятия и окисления органических соединений основываются на двух кардинальных положениях теории ферментативной кинетики. Первое положение постулирует, что фермент и субстрат вступают во взаимодействие друг с другом, образуя фермент-субстратный комплекс, который в результате одной или нескольких трансформаций приводит к появлению продуктов, снижающих барьер активации катализируемой ферментом реакции за счёт её дробления на ряд промежуточных этапов, каждый из которых не встречает энергетических препятствий для своего осуществления. Второе положение констатирует то, что независимо от характера соединений и количества этапов в ходе ферментативной реакции, катализируемой ферментом, в конце процесса фермент выходит в неизменном виде и способен вступать во взаимодействие со следующей молекулой субстрата. Иными словами, уже на этапе изъятия субстрата клетка взаимодействует с субстратом с образованием относительно, непрочного соединения, называемого “фермент-субстратным комплексом”.

Вышеуказанное хорошо иллюстрируется примером извлечения из раствора глюкозы различными микроорганизмами, содержащими фермент глюкозооксидазу в среде с молекулярным кислородом. Глюкозооксидаза образует фермент-субстратный комплекс – глюкоза – кислород – глюкозооксидаза, после распада которого образуются промежуточные продукты -глюконолактон и пероксид водорода, как это схематично показано на рис. 11.1.

Образовавшийся в результате распада указанного комплекса глюконолактон подвергается гидролизу с образованием глюконовой кислоты.

Одним из важнейших свойств ферментов является их способность синтезироваться при наличии и под воздействием определенного вещества. Другим не менее важным свойством является специфичность воздействия фермента как по отношению к катализируемой им реакции, так и по отношению к самому субстрату.

Иногда фермент способен воздействовать на один единственный субстрат (абсолютная специфичность), но значительно чаще фермент воздействует на группу схожих по наличию в них определенных атомных группировок субстратов.

Рис. 11.1. Схема “узнавания” ферментом субстрата, образования фермент-субстратного комплекса и катализ

Многим ферментам присуща стереохимическая специфичность, состоящая в том, что фермент воздействует на группу субстратов (а иногда на один), отличающихся от других особым расположением атомов в пространстве. Роль каждого фермента в процессе биохимического окисления органических веществ строго определенна: он катализирует либо окисление (т.е. присоединение кислорода или отщепление водорода), либо восстановление (т.е. присоединение водорода или отщепление кислорода) вполне определенных химических соединений. При дегидрировании тот или иной фермент может отщеплять лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле субстрата или промежуточного продукта. Сказанное относится и к ферментам, катализирующим другие метаболические процессы.

Процессы биохимического окисления у гетеротрофных микроорганизмов делят на три группы в зависимости от того, что является конечным акцептором водородных атомов или электронов, отщепляемых от окисляемого субстрата. Если акцептором является кислород, то этот процесс называют клеточным дыханием или просто дыханием; если акцептор водорода -органическое вещество, то процесс окисления называют брожением; наконец, если акцептором водорода является неорганическое вещество типа нитратов, сульфатов и пр., то процесс называют анаэробным дыханием, или просто анаэробным.

Наиболее полным является процесс аэробного окисления, т.к. его продукты – вещества, не способные к дальнейшему разложению в микро-биальной клетке и не содержащие запаса энергии, которая могла бы быть высвобождена обычными химическими реакциями. Главные из этих веществ, как уже отмечалось – диоксид углерода (С02) и вода (Н20). Хотя оба эти вещества содержат кислород, химический путь их образования в клетке может быть различным, поскольку диоксид углерода может получаться в результате биохимических процессов, протекающих в бескислородной среде под воздействием ферментов – декарбоксилаз, отщепляющих С02 от карбоксильной группы (СООН) кислоты. Вода же в результате жизнедеятельности клетки образуется исключительно путем соединения кислорода воздуха с водородом тех органических веществ, от которых он отщепляется в процессе их окисления.

Аэробная диссимиляция субстрата – углеводов, белков, жиров -носит характер многостадийного процесса, включающего первоначальное расщепление сложного углеродсодержащего вещества на более простые субъединицы (к примеру полисахариды – в простые сахара; жиры – в жирные кислоты и глицерол; белки – в аминокислоты), подвергающиеся, в свою очередь, дальнейшей последовательной трансформации. При этом доступность субстрата окислению существенно зависит от строения углеродного скелета молекул (прямой, разветвленный, циклический) и степени окисления углеродных атомов. Наиболее легко доступными считаются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин, маннит и др.) и карбоновые кислоты. Общий конечный путь, которым завершается аэробный обмен углеводов, жирных кислот, аминокислот, – цикл трикарбоновых кислот (ЦТК) или цикл Кребса, в который эти вещества вступают на том или ином этапе. Отмечается, что в условиях аэробного метаболизма около 90% потребляемого кислорода используется на дыхательный путь получения энергии клетками микроорганизмов.

Брожение является процессом неполного расщепления органических веществ, преимущественно углеводов в условиях без кислорода, в результате которого образуются различные промежуточные частично окисленные продукты, такие как спирт, глицерин, муравьиная, молочная, про-пионовая кислоты, бутанол, ацетон, метан и др., что широко используется в биотехнологии для получения целевых продуктов. До 97% органического сУбстрата может превращаться в такие побочные продукты и метан.

Ферментативное анаэробное расщепление белков и аминокислот называют гниением.

Из-за малого выхода энергии при бродильном типе метаболизма, осуществляющие его микробиальные клетки должны потреблять большее количество субстрата (при меньшей глубине его расщепления), чем клетки, получающие энергию за счет дыхания, что объясняет более эффективный рост клеток в аэробных условиях по сравнению с анаэробными.

Наибольшее количество энергии для своего функционирования клетка получает в результате окисления кислородом водорода, отщепляемого от окисляемого субстрата под действием ферментов-дегидрогеназ, которые по своему химическому действию делятся на никотинамидные (НАД) и флавиновые (ФАД). Никотинамидные дегидрогеназы первыми реагируют с субстратом, отщепляя от него два атома водорода и присоединяя их к коферменту. В результате этой реакции субстрат окисляется, а НАД восстанавливается до НАД‘Н2. Далее в реакцию вступает ФАД, перенося водород с никотинамидного кофермента на флавиновый, в результате чего НАД‘Н2 снова окисляется до НАД, а флавиновый – восстанавливается до ФАДН2. Далее через чрезвычайно важную группу окислительно-восстановительных ферментов-цитохромов – водород передается молекулярному кислороду, что и завершает процесс окисления с образованием окончательного продукта – воды.

В этой реакции и высвобождается наибольшая часть заключенной в субстрате энергии. Весь процесс аэробного окисления может быть представлен схемой рис. 11.2.

Высвобождающаяся в процессе микробиального окисления вещества энергия аккумулируется клеткой с помощью макроэргических соединений. Универсальным накопителем энергии в живых клетках является аденозинтрифосфорная кислота – АТФ (хотя имеются и другие магроэнерги).

Эта реакция фосфорилирования, как видно из (11.9) нуждается в энергии, источником которой в данном случае является окисление. Поэтому фосфорилирование АДФ тесно сопряжено с окислением, в связи чем этот процесс называют окислительным фосфорилированием. В процессе окислительного фосфорилирования при окислении, например, одной молекулы глюкозы образуется 38 молекул АТФ, тогда как в стадии гликолиза -только 2. При этом следует отметить, что стадия гликолиза протекает совершенно одинаково и в аэробных, и в анаэробных условиях, т.е. до образования пировиноградной кислоты (ПВК), и на его протекание затрачиваются 2 из 4 образующихся молекул АТФ.

Пути дальнейшей трансформации ПВК в аэробных и в анаэробных условиях расходятся.

Аэробная трансформация глюкозы может быть представлена следующей схемой:
1. Гликолиз: СбН12Об + 2ФК-+2ПВК + 2НАДН2 + 4АТФ (11.10)
2. Трансформация пировиноградной кислоты (ПВК): 2ПВК-*2С02 + 2 Ацетил КоА + 2НАДН2
3. Цикл трикарбоновых кислот (цикл Кребса): Ацетил КоА -> 4С02 + 6НАДН2 + 2ФАДН2 + 2АТФ (11.12) ЕСбН12Об -> 6С02 + 10НАДН2 + 2ФАДН2 + 4АТФ (11.13) гДе ФАД – флавопротеид.

Окисление НАДН2 в системе переноса электронов дает ЗАТФ на
1 моль; окисление 2ФАДН2 дает 4АТФ,
тогда: СбН1206 + 602 -> 6С02 + 6Н20 + 38АТФ

В условиях анаэробного превращения углеводов первым этапом является фосфорилирование глюкозы, осуществляемое с помощью АТФ под воздействием фермента гексокиназы, т.е.
Глюкоза + А ТФ -гексокиназа > глюкозо _ б – фосфат + АДФ
После завершения стадии гликолиза и образования ПВК ход дальнейшего превращения ПВК зависит от типа брожения и его возбудителя. Основные типы брожения: спиртовое, молочнокислое, пропионовокислое, маслянокислое, метановое.

Окислительное фосфорилирование может осуществляться и под воздействием фермента, синтезирующего АТФ на уровне субстрата. Однако, такое образование макроэргических связей носит весьма ограниченный характер, и в присутствии кислорода клетки синтезируют большую часть содержащейся в них АТФ через систему переноса электронов.

Аккумуляция высвобождающейся в процессе диссимиляции вещества в аэробных или анаэробных условиях с помощью макроэргических соединений (и прежде всего АТФ) позволяет устранить несоответствие между равномерностью процессов высвобождения химической энергии из субстрата и неравномерностью процессов ее расходования, неизбежной в реальных условиях существования клетки.

Упрощенно весь процесс распада органических веществ в ходе аэробных превращений может быть представлен схемой, приведенной на рис. 11.3. Схема же анаэробных превращений ПВК после стадии гликолиза представлена на рис. 11.4.

Исследованиями установлено, что зачастую тип метаболизма зависит не столько от наличия кислорода в среде, сколько от концентрации субстрата.

Это указывает на то, что в зависимости от конкретных условий функционирования биомассы в среде могут одновременно протекать как аэробные, так и анаэробные процессы трансформации органических соединений, интенсивность которых также будет зависеть от концентрации и субстрата и кислорода.

Здесь следует отметить, что в промышленной биотехнологии для получения различных продуктов микробиального происхождения (кормовых или пекарских дрожжей, различных органических кислот, спиртов, витаминов, лекарственных препаратов) используются чистые культуры, т.е. микроорганизмы одного вида зачастую селекционируемые, со строгим поддержанием видового состава, соответствующих условий питания, температуры, активной реакции среды и пр., исключающих появление и развитие других видов микроорганизмов, что могло бы привести к отклонению качества получаемого продукта от установленных стандартов.

При очистке же сточных вод, содержащих смесь разнообразных по химическому составу загрязнений, которые иногда даже весьма трудно идентифицировать аналитическими методами, биомасса, осуществляющая очистку, также представляет собой смесь, а точнее, сообщество различных видов микроорганизмов и простейших со сложными между ними отношениями. Как видовой, так и количественный состав биомассы очистных сооружений будет зависеть от конкретного метода биологической очистки и условий его реализации.

По расчетам некоторых специалистов, при концентрации растворенных органических загрязнений, оцениваемых показателем БПКП0Лн, до 1000 мг/л наиболее выгодно применение аэробных методов очистки. При концентрациях БПКПОЛн от 1000 до 5000 мг/л экономические показатели аэробных и анаэробных методов будут практически одинаковыми. При концентрациях же свыше 5000 мг/л более целесообразным будет применение анаэробных методов. Однако, при этом следует принимать во внимание не только концентрацию загрязнений, но и расходы сточных вод, а также тот факт, что анаэробные методы приводят к образованию таких конечных продуктов, как метан, аммиак, сероводород и др. и не позволяют получить качество очищенной воды, сопоставимое с качеством очистки аэробными методами. Поэтому при высоких концентрациях загрязнений применяется сочетание анаэробных методов на первой ступени (или первых ступенях) очистки и аэробных методов на последней ступени очистки. Следует подчеркнуть, что бытовые и городские сточные воды, в отличие от производственных, не содержат концентраций загрязнений, оправдывающих применение анаэробных методов, и потому эти методы очистки в данной главе не рассматриваются.

Рис. 11.3. Упрощенная схема трехстадийного распада молекул питательных веществ (Б. Альберте и др. 1986)

Рис. 11.4. Превращение пировиноградной кислоты анаэробными микроорганизмами в различные продукты

  • Методы очистки сточных вод и экологически чистые технологии водооотведения (Документ)
  • Соколов М.П. Очистка сточных вод. Учебное пособие (Документ)
  • Методы очистки сточных вод (Документ)
  • Круппо М.В. Определение необходимой степени очистки сточных вод (Документ)
  • Биологические методы очистки сточных вод (Документ)
  • Шпаргалки - Ответы к экзамену по технике защиты окружающей среды. Очистка сточных вод. Утилизация осадков сточных вод (Шпаргалка)
  • Шифрин С.М., Иванов Г.В., Мишуков Б.Г., Феофанов Ю.А. Очистка сточных вод предприятий мясной и молочной промышленности (Документ)
  • n1.doc


    1. Биохимические методы очистки сточных вод. Сущность метода.

    2. Закономерности распада органических веществ

    5

    3. Влияние различных факторов на процесс биохимической очистки

    4. Классификация биохимических методов

    8

    4.1. Аэробные методы очистки

    9

    4.2. Анаэробные методы очистки

    15

    Список литературы

    17

    1. Биохимические методы очистки сточных вод. Сущность метода.

    Биологическое окисление – широко применяемый на практике метод очистки сточных вод, позволяющий удалить из них многие органические и некоторые неорганические (сероводород, сульфиды, аммиак, нитриты и др.) вещества. Биохимическая очистка сточных вод основана на способности микроорганизмов использовать растворенные и коллоидные органические загрязнения в качестве источника питания в процессах своей жизнедеятельности. Биологическим путем обрабатываются, подвергаясь частичной или полной деструкции, многие виды органических загрязнений городских и производственных сточных вод. Контактируя с органическими веществами, микроорганизмы частично разрушают их, превращая в воду, диоксид углерода, нитрит- и сульфат-ионы и др. Другая часть вещества идет на образование биомассы. Некоторые органические вещества способны легко окисляться, а некоторые не окисляются совсем или очень медленно.

    Широкое использование биохимического метода обусловлено его достоинствами: возможностью удалять из сточных вод разнообразные органические и некоторые неорганические соединения, находящиеся в воде в растворенном, коллоидном и нерастворенном состоянии, в том числе токсичные; простотой аппаратурного оформления, относительно невысокими эксплуатационными затратами, глубиной очистки. К недостаткам следует отнести высокие капитальные затраты, необходимость строгого соблюдения режима очистки, токсичное действие на микроорганизмы ряда органических и неорганических соединений, необходимость разбавления сточных вод в случае высокой концентрации примесей.

    Для определения возможности подачи промышленных сточных вод на биохимические очистные сооружения устанавливают максимальные концентрации токсичных веществ, которые не влияют на процессы биохимического окисления (МК б) и на работу очистных сооружений (МК бос). При отсутствии таких данных возможность биохимического окисления устанавливается по биохимическому показателю БПК п /ХПК. Для бытовых сточных вод это отношение составляет при­мерно 0,86, а для производственных изменяется в очень широких пре­делах: от 0 до 0,9. Сточные воды с низким отношением БПК п /ХПК, как правило, содержат токсичные примеси, предварительное извлечение которых может повысить это отношение, т.е. обеспечить возможность биохимического окисления. Поэтому сточные воды не должны содержать ядовитых веществ и примесей солей тяжелых металлов. Биохимическую очистку считают полной, если БПК п очищенной воды составляет менее 20 мг/л и неполной, если БПК п > 20 мг/л. Такое определение условно, так как даже при полной биохимической очистке происходит лишь частичное освобождение воды от суммы находящихся в ней примесей.

    Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество различных бактерий, простейших, а также водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Главенствующая роль в этом сообществе принадлежит бактериям, число которых варьируется от 10 6 до 10 14 клеток на 1 г сухой биомассы. В процессе биохимического окисления при аэробных условиях сообщество микроорганизмов носит название активного ила или биопленки. Активный ил состоит из живых микроорганизмов и твердого субстрата и по внешнему виду напоминает хлопья коагулянта с цветом от белесо-коричневого до темно-коричневого. Скопления бактерий в активном иле окружены слизистым слоем (капсулами) и называются зооглеями. Они способствуют улучшению структуры ила, его осаждению и уплотнению.

    Активный ил представляет собой амфотерный коллоид, имеющий в интервале значений рН=4-9 отрицательный заряд, и обладающий большой адсорбционной способностью за счет развитой суммарной поверхности бактериальных клеток. Адсорбционная способность активного ила с течением времени понижается из-за насыщения загрязнениями сточной воды. Процесс восстановления идет за счет жизнедеятельности микроорганизмов, заселяющих активный ил, и называется регенерацией. Несмотря на существенные различия очищаемых сточных вод, элементарный химический состав активных илов достаточно близок, хотя и неидентичен. Это сходство есть результат общности его основы - бактериальных клеток. В состав клеток входят Н, N, S, С, О, Р, зола, белок, а также различные микроэлементы - В, V, Fe, Co, Мn, Мо, Сu и др. Н, N, С и О образуют группу органогенных веществ, эти элементы входят в бактериальные клетки в виде воды, белков, жиров и углево­дов; 80-85 % веса микробов составляет вода.

    Сухое вещество активного ила представляет собой комплекс минеральных (10-30 %) и органических (70-90 %) веществ. Основную массу органических соединений составляют белки. В состав зольных частей клеток входят микроэлементы - Са, К, Mg, S, Мn, Сu, Na, Fe, Zn и др. Кроме того для построения бактериальной клетки необходимы биогенные элементы - фосфор, азот, калий. Качество ила определяется скоростью его осаждения и степенью очистки воды. Состояние ила характеризует иловый индекс, представляющий собой отношение объема осаждаемой части активного ила к массе высушенного осадка (в граммах) после отстаивания в течение 30 минут. Чем больше иловый индекс, тем хуже оседает ил.

    2.Закономерности распада органических веществ

    Механизм изъятия веществ из сточных вод и их потребление микроорганизмами весьма сложен. В целом этот процесс может быть условно разделен на три стадии:

    1) массопередача вещества из жидкости к поверхности клетки, за счет молекулярной и конвективной диффузии;

    2) диффузия вещества через полупроницаемую мембрану поверхности клетки, возникающая вследствие разности концентраций вещества в клетке и вне ее;

    3) процесс превращения вещества (метаболизм), протекающий внутри клетки, с выделением энергии и синтезом нового клеточного вещества.

    Скорость протекания первой стадии определяется законами диффузии и гидродинамическими условиями в сооружении биохимической очистки. Турбулентность потока вызывает распад хлопьев активного ила на мельчайшие колонии микробов и приводит к быстрому обнов­лению поверхности раздела между микроорганизмами и средой.

    Процесс переноса вещества через полупроницаемые мембраны клеток может быть осуществлен двумя путями: растворением диффундирующего вещества в материале мембраны, благодаря чему оно проходит внутрь клетки или присоединением проникающего вещества к специфическому белку-переносчику, растворением образующегося комплекса и диффузией его внутрь клетки, где комплекс распадается и белок-переносчик высвобождается для совершения нового цикла.

    Основную роль в очистке сточных вод играют процессы превращения вещества внутри клеток микроорганизмов, в результате чего происходит окисление вещества с выделением энергии (катаболические превращения) и синтез новых белковых веществ, который проте­кает с затратой энергии (анаболические превращения).

    Скорость химических превращений и их последовательность определяют ферменты, выполняющие роль катализаторов и представляющие собой сложные белковые соединения с молекулярной массой до сотен тысяч и миллионов. Их активность зависит от температуры, рН и присутствия в сточной воде различных веществ.

    Суммарные реакции биохимического окисления в аэробных условиях можно представить в следующем виде:

    Окисление органического вещества

    C x H y O z (х + 0,25у - 0,5z)O 2 ? хС0 2 + 0,5уН 2 О + ?Н;

    Синтез бактериальных клеток

    C x H y O z + nNH 3 + n(x + 0,25у - 0,5z - 5)0 2 ? n(C 5 H 7 N0 2) + n(x-5)C0 2 + 0,5n(y-4)H 2 O - ?Н;

    Окисление клеточного материала

    N(C 5 H 7 N0 2) + 5n0 2 ? 5nC0 2 + 2nH 2 0 + nNH 3 + ?Н.

    Химические превращения являются источником необходимой для микроорганизмов энергии. Живые организмы способны использовать только связанную химическую энергию. Универсальным переносчиком энергии в клетке является аденозинтрифосфорная кислота (АТФ).

    Микроорганизмы способны окислять многие органические вещества, но для этого требуется различное время адаптации. Легко окисляются многие спирты, гликоли, бензойная кислота, ацетон, глицерин, сложные эфиры и др. Плохо окисляются нитросоединения, некоторые ПАВ и хлорпроизводные органические соединения.

    В процессе аэробного окисления потребляется кислород, растворенный в сточной воде. Для насыщения сточной воды кислородом проводят процесс аэрации, разбивая воздушный поток на пузырьки, которые, по возможности, равномерно распределяются в сточной воде. Из пузырьков воздуха кислород абсорбируется водой, а затем переносится к микроорганизмам. Этот процесс происходит в два этапа. На первом идет перенос кислорода из воздушных пузырьков в основную массу жидкости, на втором - перенос абсорбированного кислорода из основ ной массы жидкости к клеткам микроорганизмов, в основном под действием турбулентных пульсаций.

    Наиболее надежный способ увеличения подачи кислорода в сточную воду - повышение интенсивности дробления газового потока, т.е. уменьшение размеров газовых пузырьков. Скорость потребления кислорода зависит от многих взаимосвязанных факторов: величины биомассы, скорости роста и физиологической активности микроорганизмов, вида и концентрации питательных веществ, накопления токсичных продуктов обмена, количества и природы биогенных элементов, со держания кислорода в воде.
    3. Влияние различных факторов на процесс биохимической очистки

    Эффективность биологической очистки зависит от целого ряда факторов, одни из которых поддаются изменению и регулированию в широких диапазонах, регулирование же других, таких, как например, состав поступающих на очистку сточных вод, практически исключено. К основным факторам, определяющим пропускную способность системы и степень очистки сточной воды, относятся: наличие кислорода в воде, равномерность поступления сточной воды и концентрация в ней примесей, температура, рН среды, перемешивание, присутствие токсичных примесей и биогенных элементов, концентрация биомассы и др.

    Наиболее благоприятные условия очистки заключаются в следующем. Концентрация в очищаемых сточных водах биохимически окисляемых веществ не должна превышать допустимую величину МК б или МК бос, которая устанавливается обычно опытным путем. Сточные воды с более высокой концентрацией необходимо подвергать разбавлению. ПДК веществ при поступлении на сооружения биологической очистки приведены в справочной литературе.

    Снабжение сооружений биохимической очистки кислородом воздуха должно быть непрерывным и в таком количестве, чтобы в очищенной сточной воде, выходящей из вторичного отстойника, его было не менее 2 мг/л. Скорость растворения кислорода в воде не должна быть ниже скорости его потребления микроорганизмами. В начальный период окисления скорость потребления кислорода может в десятки раз превышать ее в конце процесса, она зависит от характера загрязнения воды и пропорциональна количеству биомассы.

    Оптимальной температурой для аэробных процессов, происходящих в очистных сооружениях, считается 20-30 °С, хотя температурный оптимум бактерий различных групп варьируется в широких пределах, от -8 °С до +85 °С. Повышение температуры за пределы физиологической нормы микроорганизмов приводит к их гибели, а понижение лишь снижает активность микроорганизмов. С повышением температуры уменьшается растворимость кислорода в воде, поэтому в теплое время года надо проводить более интенсивную аэрацию, а в зимнее - поддерживать более высокую концентрацию микроорганизмов в циркулирующем иле и увеличивать продолжительность аэрации.

    Оптимальной реакцией среды для значительной части бактерий является нейтральная или близкая к ней, хотя есть виды, хорошо развивающиеся в кислой (грибы, дрожжи) или слабощелочной среде (актиномицеты).

    Для нормального процесса синтеза клеточного вещества, а следовательно, и для эффективного процесса очистки сточных вод должна быть достаточная концентрация всех элементов питания - органического углерода (БПК), азота, фосфора.

    Кроме основных элементов клетки (С, О, N, Н) для ее построения необходимы в незначительных количествах и другие компоненты - микроэлементы (Mn, Cu, Zn, Mo, Mg, Co и др.). Содержание указанных элементов в природных водах, из которых образуются сточные воды, обычно достаточно для биохимического окисления. Недостаток азота тормозит окисление органических загрязнений и приводит к образованию трудно оседающего ила. Недостаток фосфора инициирует развитие нитчатых бактерий, что является основной причиной вспухания активного ила, плохого оседания и выноса его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот - в форме NH 4 , а фосфор - в виде солей в фосфорных кислотах. При нехватке азота, фосфора, калия в сточную воду вносят различные азотные, калийные и фосфорные удобрения. Эти элементы содержатся в бытовых сточных водах, поэтому многие химические вещества могут оказывать на микроорганизмы токсичное воздействие, нарушающее их жизнедеятельность. Такие вещества, попадая в бактериальную клетку, взаимодействуют с ее компонентами и нарушают их функции, среди них: S в, Ag, Cu, Co, Hg, Рв и др. Количество взвешенных частиц не должно быть более 100 мг/л для биологических фильтров и 150 мг/л для аэротенков.

    Интенсивность и эффективность очистки сточных вод зависят не только от условий обитания микроорганизмов, но и от их количества, т.е. дозы активного ила, которая поддерживается в аэротенках обычно равной 2-4 г/л. Повышение концентрации микроорганизмов в сточной воде позволяет ускорить процесс биологической очистки, но при этом одновременно необходимо увеличивать количество растворенного в воде кислорода, что ограничено состоянием насыщения, и улучшать условия массообмена. При биологической очистке необходимо применять "молодой" активный ил с возрастом 2-3 суток. Он не вспухает, более вынослив к колебаниям температуры, рН среды, мелкие хлопья его лучше осаждаются. Важным условием улучшения биологической очистки и уменьшения объема очистных сооружений является регенерация активного ила, заключающаяся в его аэрации при отсутствии питательного субстрата.

    Для создания наиболее благоприятных условий массопередачи питательных веществ и кислорода к поверхности микробных клеток необходимо перемешивание сточной воды и активного ила. При этом турбулизация жидкости приводит к разрушению хлопьев активного ила, обновлению их поверхности, лучшему снабжению клеток питательными веществами и кислородом, создает более благоприятные условия обитания микроорганизмов.
    4. Классификация биохимических методов

    Известны аэробные и анаэробные методы биохимической очистки. Аэробные методы основаны на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 °С. При изменении температурного и кислородного режимов состав и число микроорганизмов меняется, они культивируются в активном иле или биопленке. Анаэробные методы протекают без доступа кислорода, их используют главным образом для обработки осадков. Всю совокупность сооружений биологической очистки можно разделить на три группы по признаку расположения в них активной биомассы:

    1) активная биомасса закреплена на неподвижном материале, а сточная вода тонким слоем скользит по материалу загрузки - биофильтры;

    2) активная биомасса находится в воде в свободном (взвешенном) состоянии - аэротенки, циркуляционные окислительные каналы, окситенки;

    3) сочетание обоих вариантов расположения биомассы - погружные биофильтры, биотенки, аэротенки с заполнителями.

    Биологическая очистка может также осуществляться в естественных условиях на сооружениях почвенной очистки и в биологических прудах.
    4.1. Аэробные методы очистки.

    Очистку на полях орошения, полях фильтрации и биологических прудах - отличают сравнительно низкие строительные и эксплуатационные затраты, буферная способность при залповых сбросах сточных вод, колебаниях рН, температуры, достаточную степень изъятия из воды биогенных элементов. К недостаткам относится сезонность работы, низкая скорость окисления загрязнений. Поля орошения и поля фильтрации относятся к почвенным методам очистки.

    Поля орошения являются сельскохозяйственными угодьями, специально предназначенными для очистки сточных вод и одновременного выращивания растений. На полях фильтрацииочистка производится без участия растений. Очистка сточных вод на полях орошения основана на воздействии почвенной микрофлоры, кислорода воздуха, солнца и жизнедеятельности растений. В очистке сточных вод в той или иной степени участвует активный слой грунта толщиной 1,5-2 м. Минерализация органического вещества происходит в основном в верхнем полуметровом слое почвы. При этом повышается плодородие почвы, что связано с обогащением почвы нитратами, фосфором и калием. Однако общий солевой состав стоков не должен превышать 4-6 г/л для предотвращения засоления почвы. Сточные воды подаются на поля орошения периодически с интервалом 5 дней. В зимний период для местностей с холодной зимой на них производится намораживание сточных вод. Для сбора сточной воды, используемой на полях орошения, служат пруды-накопители вместимостью, равной шестимесячному накоплению в них воды.

    Биологические пруды - искусственно созданные или естественные водоемы, в которых очистка сточных вод идет под воздействием природных процессов самоочищения. Они могут применяться как для самостоятельной очистки, так и для глубокой доочистки сточных вод, прошедших биологическую очистку. Представляют собой неглубокие водоемы (0,5-1 м), хорошо прогреваемые солнцем и заселенные водными организмами.

    В процессах, протекающих в биопрудах, наблюдается полный природный цикл разрушения органических загрязнений. Воздействие на работу прудов различных факторов может создавать в них как аэробные, так и аэробно-анаэробные условия. Пруды, постоянно работающие в аэробных условиях, называются аэрируемыми, а пруды с переменными условиями - факультативными.

    Аэробные условия в прудах могут поддерживаться либо за счет естественного поступления кислорода из атмосферы и фотосинтеза, либо за счет принудительной подачи воздуха в воду. Поэтому различают пруды с естественной и искусственной аэрацией. Время пребывания воды в прудах с естественной аэрацией составляет от 7 до 60 суток. Вместе со сточными водами из вторичных отстойников выносится активный ил, который является посевным материалом. Эффективность очистки в прудах определяется временем года, в холодный период она резко снижается.

    Пруды с искусственной аэрацией имеют значительно меньший объем и требуемая степень очистки в них обычно достигается за 1-3 суток.

    Биофильтры - искусственные сооружения биологической очистки - представляют собой круглые или прямоугольные в плане сооруже­ния из кирпича или железобетона, загруженные фильтрующим материалом, на поверхности которого развивается биопленка. Сточная вода фильтруется через слой загрузки, покрытой пленкой из микроорганизмов, за счет жизнедеятельности которых осуществляется очистка. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра.

    По типу загрузочного материала биофильтры делятся на две категории: с объемной (зернистой) и плоской загрузкой. В качестве зернистой загрузки используют щебень, гравий, гальку, шлак, керамзит, керамические и пластмассовые кольца, кубы, шары, цилиндры и т.п. Плоская загрузка - это металлические, тканевые и пластмассовые сетки, решетки, блоки, гофрированные листы, пленки и т.п., нередко свернутые в рулоны.

    Биофильтры с объемной загрузкой подразделяются на капельные, высоконагружаемые, башенные. Капельные биофильтры наиболее просты по конструкции, загружаются материалом мелких фракций высотой 1-2 м и имеют производительность до 1000 м 3 /сут, на них достигается высокая степень очистки. В высоконагружаемых фильтрах применяется больший размер кусков загрузки, а ее высота составляет 2-4 м. Высота загрузки в башенных фильтрах достигает 8-16 м. Два последних вида фильтров применяются при расходах сточных вод до 50 тыс.м 3 /сут как для полной, так и неполной биологической очистки.

    Биологические фильтры с плоской загрузкой обладают значительно более высокой окислительной способностью, чем фильтры с объемной загрузкой. Окислительная способность - это скорость растворения кислорода в процессе аэрации полностью обескислороженной воды при атмосферном давлении и температуре 20 °С (г О 2 /ч)); к ней близко понятие окислительной мощности - скорости реакций окисления загрязнений (г О 2 /(м 3 ч)).

    Промежуточное положение между аэротенками и биофильтрами занимают погружные биофильтры и биотенки-биофильтры.

    Погружные (дисковые) биофильтры представляют собой резервуар, в котором имеется вращающийся вал с насаженными на него дисками, попеременно контактирующими со сточной водой и воздухом. Размер дисков 0,5-3 м, расстояние между ними 10-20 мм, они могут быть металлическими, пластмассовыми и асбестоцементными, число дисков на валу от 20 до 200. Биотенк-биофильтрпредставляет собой корпус, в котором заключены лотковые элементы загрузки, расположенные в шахматном порядке. Эти элементы орошаются сверху водой, которая наполняя их стекает через края вниз. На наружных поверхностях элементов образуется биопленка, внутри - биомасса, напоминающая активный ил. Конструкция обеспечивает высокую производительность и эффективность очистки.

    По принципу поступления воздуха в толщу аэрируемой загрузки биофильтры могут быть с естественной и принудительной аэрацией.

    В пусковой период биологических фильтров на кусках загрузки выращивается биологическая пленка. Основным агентом этой пленки является микробное население. Микроорганизмы биопленки используют органические примеси сточных вод как источники питания и дыхания, при этом масса биопленки увеличивается. По мере увеличения толщины пленки происходит ее отмирание и смыв протекающей сточной водой. Очищенная в биофильтре вода вместе с частицами отмершей биопленки поступает во вторичный отстойник. Рециркуляцию биологически активного материала обычно не предусматривают, что обусловлено высокой удерживающей способностью сооружения массы биопленки.

    При поступлении сточных вод с БПКп > 300 мг/л во избежание частого заиливания поверхности биофильтра предусматривается рециркуляция - возврат части очищенной воды для разбавления исходной сточной воды. Рециркуляция очищенной воды увеличивает содержание растворенного кислорода в смеси, поддерживается более равномерная гидравлическая нагрузка, выравнивается концентрация биопленки по высоте сооружения. Однако при этом возрастает потребность в объемах отстойников, увеличивается расход энергии на перекачивание воды.

    Распределение сточных вод по поверхности биофильтра произво­дится стационарными разбрызгивающими оросителями (спринклерами) или вращающимися реактивными оросителями с циклической подачей воды в течение 5-10 минут.

    Применение биофильтров ограничивается возможностью их заи­ливания, снижением окислительной мощности в процессе эксплуатации, появлением неприятных запахов, трудностью равномерного нара­щивания пленки.

    Очистка в аэротенках. Аэробная биологическая очистка больших объемов сточных вод осуществляется в аэротенках - железобетонных аэрируемых сооружениях со свободно плавающим в объеме обрабатываемой воды активными илом, бионаселение которого использует загрязнения сточных вод для своей жизнедеятельности.

    Аэротенки можно классифицировать по следующим признакам:

    1) по структуре потока - аэротенки-вытеснители, аэротенки-смесители и аэротенки с рассредоточенным впуском сточной жидкости (промежуточного типа);

    2) по способу регенерации активного ила - аэротенки с отдельно стоящими или совмещенными регенераторами ила;

    3) по нагрузке на активный ил - высоконагружаемые (для неполной очистки), обычные и низконагружаемые (с продленной аэрацией);

    4) по числу ступеней - одно-, двух- и многоступенчатые;

    5) по режиму ввода сточных вод - проточные, полупроточные, с переменным рабочим уровнем, контактные;

    6) по типу аэрации - с пневматической, механической, комбинированной гидродинамической или пневмомеханической;

    7) по конструктивным признакам - прямоугольные, круглые, комбинированные, шахтные, фильтротенки, флототенки и др.

    Аэротенки используются в чрезвычайно широком диапазоне расходов сточных вод от нескольких сот до миллионов кубометров в сутки.

    В аэротенках-смесителяхнагрузка на ил и скорость окисления загрязнений практически неизменны по длине сооружения. Они наиболее пригодны для очистки концентрированных (БПКп до 1000 мг/л) производственных сточных вод при значительных колебаниях их расхода и концентрации загрязнений. В аэротенках-вытеснителяхна­грузка загрязнений на ил и скорость их окисления изменяются от наибольших значений в начале сооружения до наименьших в его конце. Такие сооружения применяются в том случае, если обеспечивается достаточно легкая адаптация активного ила. В аэротенках с рассредоточенной подачей водыпо его длине единичные нагрузки на ил уменьшаются и становятся равномерными. Такие сооружения используются для очистки смесей промышленных и городских сточных вод. Работа аэротенка неразрывно связана с нормальной работой вторичного отстойника, из которого возвратный активный ил непрерывно перекачивается в аэротенк. Вместо вторичного отстойника для отделения ила от воды может быть использован флотатор.

    В одноступенчатой схеме без регенератора нельзя интенсифици­ровать процесс очистки стоков. При наличии регенератора в нем заканчиваются процессы окисления и ил приобретает первоначальные свойства. Одноступенчатые схемы без регенерации ила применяют при БПКп 150 мг/л. Двухступенчатая схема используется при высокой исходной концентрации органических загрязнений в воде, а также при наличии в воде веществ, скорость окисления которых резко различается. На первой ступени очистки БПКп сточных вод снижается на 50-70 %.

    Для обеспечения нормального хода процесса биологического окисления в аэротенк необходимо непрерывно подавать воздух. Система аэрациипредставляет собой комплекс сооружений и специального оборудования, обеспечивающего снабжение жидкости кислородом, поддержание ила во взвешенном состоянии и постоянное перемешивание сточной воды с илом. Для большинства типов аэротенков система аэрации обеспечивает одновременное выполнение этих функций. По способу диспергирования воздуха в воде на практике применяются следующие системы аэрации: пневматическая, механиче­ская, пневмомеханическая и струйная. В нашей стране большее распространение получила пневматическая система аэрации.

    Современный аэротенк - это гибкое в технологическом отношении сооружение, представляющее собой железобетонный резервуар коридорного типа, оборудованный аэрационной системой. Рабочую глубину аэротенков принимают от 3 до 6 м, отношение ширины коридора к рабочей глубине от 1:1 до 2:1. Для аэротенков и регенераторов количество секций должно быть не менее двух; при производительно­сти до 50 тыс.м 3 /сут назначается 4-6 секций, при большей производи­тельности 8-10 секций, все они рабочие. Каждая секция состоит из 2-4 коридоров.

    Аэротенки-вытеснители- длинные коридорные сооружения, в которых вода и активный ил подаются в начало сооружения, а иловая смесь отводится в конце его. При этом практически не происходит перемешивание поступающей воды с ранее поступившей. Такие аэротенки состоят из нескольких коридоров и могут быть со встроенным регенератором и без него. Длина таких аэротенков достигает 50-150 м и объем от 1,5 до 30 тыс.м 3 . В большой степени режиму вытеснения соответствуют конструкции аэротенков ячеистого типа.Они представляют собой прямоугольные в плане сооружения, разделенные на ряд отсеков поперечными перегородками. Смесь из первого отсека поступает во второй (снизу), из второго в третий переливается через перегородку (сверху) и т.д. В каждой ячейке устанавливается режим полного смешения, а сумма ряда последовательно расположенных смесителей составляет практически идеальный вытеснитель. При этом предотвращается возвратное движение воды, отсутствует продольное перемешивание.

    Сточная вода и ил в аэротенках-смесителяхподводится и отводится равномерно вдоль длинных сторон сооружения. Считается, что поступающая смесь очень быстро (в расчетах мгновенно) смешивается с содержимым всего аэротенка. Это позволяет равномерно распределять органические загрязнения и растворенный кислород и обеспечи­вать работу сооружения при постоянных условиях и высоких нагрузках. Ширина коридора аэротенка-смесителя составляет 3-9 м, число коридоров 2-4, длина до 150 м.

    По сравнению с аэротенками-вытеснителями в аэротенках-смесителях высокая остаточная концентрация примесей в очищенной воде. Поэтому их целесообразно применять для очистки концентрированных сточных вод на первой ступени, а аэротенки-вытеснители – на второй ступени.

    Аэротенки - смесители могут быть сблокированы со вторичными отстойниками и выполнены отдельно от них. Аэротенки-отстйники(аэроакселаторы) компактны, позволяют увеличить рециркуляцию иловой смеси без применения специальных насосных станций, улучшить кислородный режим отстойника и повысить дозу ила до 3-5 г/л, соответственно увеличив окислительную мощность.

    Аэротенки промежуточного типасовмещают элементы аэротенков-вытеснителей и аэротенков-смесителей. К ним относятся аэротенки с рассредоточенной подачей воды и сосредоточенной подачей активного ила, а также каскад аэротенков-смесителей. В них создаются условия для более высокой средней концентрации активного ила, чем в аэротенках-вытеснителях, и обеспечивается более высокое качество очистки, чем в аэротенках-смесителях. Выполняются они в виде двух- или четырехкоридорных сооружений. Капитальные затраты на строительство таких аэротенков снижаются не менее чем на 15 % по сравне­нию с рассмотренными выше, при этом сохраняется высокое качество очистки.

    Окситенкипредназначены для биохимической очистки сточных вод, где вместо воздуха применяется технический кислород. Благодаря этому создаются условия для повышения дозы активного ила (до 6-10 г/л), снижаются энергозатраты на аэрацию, увеличивается окисли­тельная мощность (в 5-10 раз выше, чем у аэротенков), эффективность использования кислорода составляет 90-95 %.

    Типовые схемы биохимической очистки включают, как правило, целый ряд установок по усреднению стоков, их механической очистки, собственно сооружения биологической очистки, устройства для приготовления и дозирования реагентов, доочистки сточных вод и обработки осадков. Схемы могут быть одноступенчатыми и многоступенчатыми. По приведенной схеме осуществляется совместная очистка промышленных и бытовых сточных вод. При такой очистке процесс протекает более устойчиво и полно, т.к. бытовые стоки содержат биогенные элементы, а также разбавляют производственные сточные воды. Сточные воды, предварительно очищенные на сооружениях механической очистки, направляются на биологическую очистку в аэротенках с регенераторами. Выделенный во вторичных отстойниках активный ил делится на два потока: циркулирующий с помощью насосной станции перекачивается в регенератор, а затем в аэротенк, избыточный поступает на осветление в первичные отстойники. Очищенная вода хлорируется и направляется в водоем или возвращается в производство. Выделенный осадок обрабатывается в метантенках и обезвоживается на иловых площадках, Выделяющийся при сбраживании газ идет на сжи­гание в котельную.
    4.2. Анаэробные методы очистки.

    Для обезвреживания осадков сточных вод и предварительной очистки концентрированных сточных вод может использоваться про­цесс анаэробного сбраживания. В зависимости от конечного вида про­дукта различают следующие виды брожения: спиртовое, пропионово-кислое, молочнокислое, метановое и др. Конечными продуктами бро­жения являются спирты, кислоты, ацетон, газы брожения (СO 2 , Н 2 , СН 4).

    Для очистки сточных вод используют метановое брожение. Процесс этот сложен и состоит из многих стадий, в метановом брожении различают две фазы. В первой фазе брожения (кислой) расщепляются сложные органические вещества с образованием органических кислот, а также спиртов, аммиака, ацетона, H 2 S, CO 2 , Н 2 и др., в результате чего сточные воды подкисляются до рН=5-6. Затем под действием метановых бактерий (щелочная фаза) кислоты разрушаются с образованием СН 4 и СO 2 . Считается, что скорости превращения в обеих фазах одина­ковы. В среднем степень распада органических соединений составляет 40 %.

    Процессы метанового брожения осуществляют в метантенках - герметически закрытых резервуарах, оборудованных приспособления­ми для ввода обрабатываемого и отвода сброженного осадка.

    Процессы сбраживания ведут в мезофильных (30-35 °С) и термофильных (50-55 °С) условиях. В термофильных условиях разрушение органических соединений происходит более интенсивно. Метантенк представляет собой железобетонный резервуар с коническим днищем, снабженный устройством для улавливания и отвода газа, а также оборудованный подогревателем и мешалкой. Применяются метантенки диаметром до 20 м и полезным объемом до 4000 м 3 .

    Процесс брожения сточных вод ведут в две ступени. При этом часть осадка из второго метантенка возвращается в первый, где обеспечивается хорошее перемешивание. При сбраживании выделяются газы со средним содержанием СН 4 - 63-65 %, СO 2 - 32-34 %. Теплотворная способность газа 23 МДж/кг, он сжигается в топках паровых котлов. Полученный при этом пар используется для нагрева осадков в метантенках или для других целей.

    Список литературы


    1. Техника защиты окружающей среды /Родионов А.И., Клушин В.Н., Торочешников Н.С. Учебное пособие для вузов. – М.: Химия, 1989.

    1. КомароваЛ.Ф., Кормина Л.А. Инженерные методы защиты окружающей среды. Техника защиты атмосферы и гидросферы от промышленных загрязнений: Учебное пособие. – Барнаул, 2000.


    План лекции:

    Общие принципы применения биологических методов очистки промышленных сточных вод. Технологические схемы.

    Конструкции сооружений (аэротенки – вытеснители, аэротенки – смесители, аэротенки – отстойники, фильтртенк). (0,056; 2ч ).


    Билогическая очистка производственных сточных вод для удаления из воды растворенных органических веществ. Наиболее часто применяют биохимическое их окисление в природных или искусственно созданных условиях. В первом случае для этого используются почвы, проточные и замкнутые водоемы (реки, озера, лагуны и т. п.), во втором – специально построенные для очистки сооружения (биофильтры, аэротенки и другие окислители различных модификаций). Эти сооружения аналогичны сооружениям, применяемым для очистки бытовых сточных вод; специфичны лишь исходные расчетные данные (нагрузки по воде и по количеству загрязняющих веществ на единицу объема сооружения), которые определяются особенностями состава производственных стоков.

    При очистке бытовых и производственных сточных вод сложно удалять тонкодисперсные и растворенные органических веществ. Для извлечения таких примесей используются биологические, точнее биохимические процессы, осуществляемые комплексом различных видов микроорганизмов, способных адаптироваться (приспосабливаться) к условиям среды, т.е. к составу воды, концентрации в ней загрязнений, к температуре и активной реакции среды.

    Биологическая очистка сточных вод основана на способности, микроорганизмов использовать в качестве питательного субстрата, находящиеся в сточных водах органические вещества (кислоты, спирты, белки, углеводы и т.д.), которые являются для них источником углерода, а азот – из аммиака, нитратов, аминокислот и др.; фосфор и калий – из минеральных солей этих веществ. В процессе питания микроорганизмов происходит прирост их био массы.

    Процесс биологической очистки условно разделяют на две стадии (протекающие одновременно, но с различной скоростью): адсорбция из сточных вод тонкодисперсной и растворенной примеси органических и неорганических веществ поверхностью тела микроорганизмов и разрушение адсорбированных веществ внутри клетки микроорганизмов при протекающих в ней биохимических процессах (окислении, восстановлений). Обе стадии наблюдаются как в аэробных, так и в анаэробных условиях. Соответственно и микроорганизмы разделяются на две группы: аэробные и анаэробные.

    Суммарное количество органических веществ, которое может быть изъято и разрушено комплексом микроорганизмов, зависит в основном от биомассы этого комплекса. Скорость же изъятия веществ и их окисления зависит от многочисленных факторов: от структуры веществ и их концентрации, от их сочетания в очищаемых водах и способности взаимодействовать, от степени их токсичности и т.д.

    Биохимическому окислению могут подвергаться и некоторые минеральные вещества: например, сероводород с помощью серобактерий окисляется до элементарной серы и серной кислоты; аммиак окисляется до азотистой и азотной кислоты (нитрификация).

    В количественном отношении биомасса не остается постоянной. В зависимости от условий жизнедеятельности микроорганизмов в процессе очистки она может уменьшаться или увеличиваться. Прирост ее зависит от соотношения между количеством органических веществ, поддающихся биохимическому распаду, выраженным БПК, и общим количеством органических веществ, содержащихся, в очищаемой сточной жидкости, выраженным ХПК. Чем больше величина этого соотношения, тем выше прирост биомассы, так как происходит он за счет разницы в количестве органического вещества, оцениваемого по ХПК и БПК. В производственных сточных водах соотношение БПК и ХПК колеблется в пределах от 0 до 0, 9.

    Зависимость между приростом биомассы и БПК необходимо учитывать при выборе типа биоокислителя. Очевидно, что для очистки стоков с

    большой ХПК и малой БПК нель 1 з 7 я 2

    применять биофильтры обычной

    конструкции с мелко– и даже крупнозернистым загрузочным материалом, так как будет неизбежным их заиливание биопленкой и нарушение нормальной работы. В этом случае рекомендуется применять аэротенки. Прирост биомассы трудно определить расчетом, поэтому его устанавливают экспериментально при изучении сточных вод и выяснении возможных, наиболее эффективных методов их очистки или принимают по данным эксплуатации очистных сооружений для аналогичных сточных вод. При ориентировочных расчетах можно пользоваться (по данным ВНИИ ВОДГЕО) уравнением


    П р

    К ХПК

    БПК полн ,


    где Пр – прирост биомассы активного ила в аэротенках, рассчитанных на полную очистку; К – коэффициент пропорциональности, характеризующий количество ила; для промышленных сточных вод К = 0,1–0.9, или уравнением


    П р

    ХПК н 

    ХПК 0

    БПК н

    БПК 0  а


    где ХПК Н . ХПК 0 – химическая потребность кислорода соответственно в неочищенной и очищенной воде; БПК Н , БПК 0 – биологическая потребность кислорода соответственно в неочищенной и очищенной воде; а – убыль биомассы активного ила вследствие автолиза за время пребывания жидкости в аэротенке; r

      ХПК 1 мг биомассы активного ила.

      Теоретические расчеты технологического процесса биологической очистки производственных сточных вод осложняются большим разнообразием их состава не только в различных отраслях промышленности, но и на предприятиях одной и той же отрасли. В производственных стоках наряду с трудноокисляющимися веществами нередко встречаются и токсичные. Попадая в биологические окислители, эти вещества могут снижать скорость процесса или совсем его останавливать, что нарушает нормальную работу очистных сооружений, снижает полноту очистки и повышает ее стоимость.

      Влияние токсичных веществ значительно ослабляется при применении биологических окислителей, обеспечивающих высокую интенсивность процесса окисления. Допустимая концентрация токсичных веществ, при которой возможно биологическое их окисление, зависит от природы этих веществ.

      Весьма разнообразно влияние на биохимические процессы органических токсичных веществ. Многие из них служат источником углерода для микроорганизмов, вследствие чего они могут перерабатываться при значительных концентрациях в очищаемых сточных водах. Однако процесс их биохимического окисления протекает замедленно, особенно в его начале; по мере приспособления микроорганизмов интенсивность процесса повышается и через какой-то период времени достигает максимального своего значения. Продолжительность периода адаптации зависит от вида токсичных веществ и их концентрации; обычно он занимает до д 1 7 в 3 ух месяцев и лишь иногда больше.

      Существенное влияние на ход биохимического процесса очистки сточных вод имеет соотношение между количеством загрязняющих веществ и биомассой комплекса микроорганизмов, осуществляющих процесс. Эта связь используется при проектировании и эксплуатации очистных сооружений и выражается так называемой нагрузкой загрязнений, г, на единицу биомассы, г. Последняя является основным исходным параметром при технологическом расчете наиболее распространенных современных окислителей – аэротенков. О возможности очистки производственных сточных вод судят по многим показателям качественной и количественной их характеристики. Основными из них являются: способность органических веществ сточных вод биохимически окисляться; эта способность определяется по соотношению БПК и ХПК; концентрация загрязняющих веществ; наличие и концентрация веществ, способных оказывать токсическое воздействие на микроорганизмы; активная реакция сточных вод.

      Многие виды производственных стоков лишь в какой – то мере удовлетворяют всем перечисленным требованиям биологической очистки и нуждаются в предварительной подготовке к ней (например, сульфатные и сульфитные щелоки предприятий целлюлозно-бумажной промышленности имеют резко кислую реакцию и весьма высокую концентрацию органических веществ; стоки фабрик искусственного волокна, отработавшие воды цехов гальванопокрытий, травильных ванн и др. содержат недопустимые количества токсичных веществ).

      Первым этапом подготовки производственных сточных вод любого вида к последующей их очистке следует считать возможно полное извлечение из них ценных примесей, например: фенолов – из газогенераторных стоков; кислот и щелочей – из сточных вод от производства искусственного волокна; волокна – из стоков целлюлозно-бумажной промышленности; купороса из стоков травильных цехов и т. д. В результате не только собирается ценное сырье, но и снижается общая загрязненность стоков. Часто предварительная подготовка производственных сточных вод к биологической очистке сводится к снижению начальной концентрации в них загрязняющих веществ. В этих случаях ограничиваются разбавлением концентрированных стоков. В качестве разбавляющей воды используются условно-чистые производственные воды и биологически очищенные стоки; последние можно применять лишь в тех случаях, если они не содержат токсичных веществ, которые не разрушаются биохимически и при повышении их концентрации за счет рециркуляции могут затормозить или приостановить биохимические процессы окисления органических веществ разбавляемой сточной жидкости. Количество рециркулируемой биологически очищенной воды, как правило, не должно превышать 25% разбавляемого стока. Сильнощелочные или кислые производственные стоки нередко приходится предварительно нейтрализовать до оптимального значения активной реакции 6,5–8,5. Отрицательное влияние на ход биологических процессов оказывает наличие в сточных водах нерастворенных примесей, особенно таких, как нефть, масла, 1 7 с 4 молы и др. Возможно полное удале-

      ние их необходимо предусматривать при предварительной обработке производственных стоков, направляемых на биологическую очистку; остаточное количество взвешенных веществ не должно превышать 150 мг/л независимо от химической природы примесей. Ограничивается также концентрация растворенных солей: общее их количество, как правило, не должно превышать 10 г/л, хотя из практики известно, что биологическая очистка успешно протекает и при значительно более высокой концентрации солей.

      Одной из особенностей производственных сточных вод является сложность и непостоянство их состава. Это необходимо учитывать при выборе типа окислителей и технологической схемы их работы. При очистке стоков с резкими колебаниями их состава необходимо иметь в виду возможность периодических нарушений нормальной жизнедеятельности микроорганизмовминерализаторов и снижение эффекта биологической очистки. Поэтому следует предусматривать возможность регулирования нагрузки (по загрязняющим веществам) на очистные сооружения, которая должна соответствовать изменившемуся составу сточных вод, а также меры по восстановлению жизнедеятельности микроорганизмов.

      В зависимости от местных условий эти требования выполняются различным образом. В одних случаях устраивают регулирующие емкости, рассчитанные на прием избыточного (против проектного) количества воды с : последующим сбросом ее на очистные сооружения; в других повышают предварительную очистку сточных вод за счет более длительного их отстаивания, коагуляции (в том числе) повышенными дозами коагулянта, предварительной аэрации стоков и т. п.

      Особенно важное значение при биологической очистке имеет ре-гулирование количества биомассы и сохранение ее активности. В аэротенках это достигается регенерацией циркулирующего активного ила. Наличие регенераторов в комплексе сооружений очистной станции исключает вероятность выхода из строя на длительный период биоокислителей при попадании в сточную воду каких-либо веществ, оказывающих токсическое действие на биоценоз окислителей.

      Другой особенностью производственных стоков является наличие в них загрязняющих веществ, окисляющихся с различной скоростью и требующих для окисления различные количества кислорода. С этим связана неравномерность потребления кислорода в процессе очистки. Скорость его потребления зависит от ряда факторов, в том числе от характера загрязнений сточных вод, и пропорциональна биомассе микроорганизмов, осуществляющих окисление. Следует иметь в виду, что даже при одинаковой биомассе она может быть различной. В меньших пределах колеблется биомасса микробиального комплекса (активного ила в аэротенках или биопленки в биофильтрах). Оптимальная концентрация активного ила для производственных сточных вод большинства видов, как показывает практика их очистки, 2,5–3 г/л. Определение ее теоретическим путем крайне затруднено вследствие большого числа определяющих факторов. 175

      Одно из основных исходных положений, на котором базируется расчет биоокислителей для сточных вод относительно стабильного состава (например, бытовых вод), а именно строгая пропорциональность между скоростью потребления кислорода и БПК сточных вод, в подавляющем большинстве случаев очистки производственных стоков нарушается, что отрицательно отражается на ходе процесса очистки.

      Неравномерность режима потребления кислорода в процессе биохимической очистки сточных вод вызывает необходимость подачи воздуха в соответствии с этим режимом. В окислителях с принудительной аэрацией необходимое соответствие достигается путем дифференцированной подачи воздуха и биомассы. Нарушение оптимального соотношения между биомассой и подаваемым количеством воздуха при его недостаточности приводит к ряду крайне нежелательных последствий: снижению активности биомассы, к вспуханию активного ила в аэротенках, к плохому отделению его в отстойниках и к повышению его влажности – все это нарушает нормальную работу очистных сооружений и снижает степень очистки сточных вод.

      Вероятность неблагоприятных условий, создающихся при очистке производственных стоков, особенно велика в тех случаях, когда стоки содержат большое количество легко окисляющихся органических веществ. Эффектными мерами борьбы с такими явлениями служат повышенная интенсивность аэрации в той зоне аэротенка, где скорость потребления кислорода достигает максимума; к положительным результатам приводит и снижение концентрации активного ила.

      В системах с принудительной подачей воздуха общее его количество и интенсивность аэрации следует определять по максимальной концентрации активного ила, а не по средним значениям этих показателей. Это вызывает некоторое увеличение стоимости очистки сточных вод, но зато повышает санитарную надежность работы очистных сооружений, что во многих случаях имеет важное значение.

      Снабжать биоокислители кислородом воздуха следует непрерывно. Общее его количество, подаваемое в сооружение, должно быть таким, чтобы в выходящей из вторичного отстойника очищенной воде было не менее 2 мг/л кислорода.

      Скорость и полнота процесса биологической очистки зависят от температуры среды, она должна быть не ниже 6 0 С и не выше 40 0 С.

      Степень очистки воды в биоокислителях любого типа зависит от начальной концентрации поступающих на них сточных вод – поэтому предварительной их очистке следует уделять большое внимание.

      При повышенном содержании в сточных водах трудно оседающих примесей целесообразно предусматривать предварительную аэрацию или биокоагуляцию таких вод. В результате достигается более высокий эффект удаления взвешенных веществ при последующем отстаивании, а также значительное снижение БПК. Необходимая продолжительность аэрации в обоих случаях 10-20 мин. при интенсивности 5-10м 3 / 1 ч 7 6 на 1м 2 площади аэратора (в плане).

      Расход воздуха на 1м 3 аэрируемой жидкости составляет 0,3-0,5м 3 . Эффект снижения начальной концентрации нерастворенных примесей таким путем удается увеличивать на 10–25%, примерно на столько же снижается количество органических веществ. Высококонцентрированные по органическим веществам сточные воды до подачи их на биоокислители можно подвергать сбраживанию в метантенках. Целесообразность такой предварительной обработки производственных стоков и ее эффективность определяются в каждом случае экспериментально, так как общих для всех видов стоков количественных показателей еще не установлено. Если по характеру загрязнений производственных сточных вод к ним применимы те же методы очистки, что и к бытовым водам, то по технико-экономическим показателям, как правило, целесообразна совместная их обработка. Однако к решению вопроса о возможности их объединения следует подходить с большой осторожностью, особенно при биохимической очистке объединенного стока. Здесь необходимо учитывать не только имеющиеся данные о режиме притока, количестве и составе производственных стоков при существующем профиле промышленного предприятия, используемом им сырье и технологии его обработки, но и вероятные изменения этих показателей в будущем при расширении и реконструкции предприятия. Недостаточный учет их может привести к тому, что очистная станция не будет обеспечивать такую степень очистки стоков, какая предусматривалась при ее проектировании, а это может привести к необходимости расширения или переустройства станции. Кроме того, необходимо также учитывать неизбежность бактериального загрязнения производственных стоков и трудности их последующего обеззараживания.

      Объединение производственных сточных вод с бытовыми допустимо, если количество их мало по сравнению с количеством бытовых вод и если производственные стоки не нарушат нормальную работу очистных сооружений.

      Промышленные сточные воды, направляемые на биологическую очистку, должны удовлетворять определенным требованиям:

      • в промышленных сточных водах должны содержаться растворенные и коллоидные органические загрязнения;

        вода должна содержать необходимое количество биогенных элементов (азот, фосфор, калий и др.);

      БПК 20 сточной воды не должно быть очень большим (БПК 20 1000


      оптимальное рН = 7...8 (допускается рН = 6,5...9);

      температура СВ 6...30 С (оптимальная 20 С);

      сточные воды не должны содержать ядовитых веществ в концентра-

      циях выше допустимых (например, свинец 5 мг/л; медь 10 мг/л);

      • В необходимых случаях для соблюдения этих требований стоки подвергаются предварительной специальной обработке механическими, физико-химическими и другими способами для снижения концентрации вредных и ядовитых веществ, БПК, изменения рН среды, охлаждения.

        Рис. 101 Схемы аэротенков: а–аэротенк – вытеснитель с рассредоточенной подачей воздуха; б–аэротенк-смеситель с рассредоточенной подачей сточной жидкости и активного ила; в–аэротенк-смеситель с рассредоточенной подачей сточной жидкости; 1–первичный отстойник; 2–аэротенк; 3– вторичный отстойник


        Для снижения БПК часто применяют также разбавление промышленных сточных вод бытовыми стоками и речной водой. Бытовые стоки содержат все необходимые биогенные вещества и их всегда рекомендуется добавлять к промышленных сточным водам для обеспечения нормальной жизнедеятельности бактерий, особенно в пусковой период.

        При отсутствии бытовых сточных вод в промышленных сточных вод добавляют:

        • удобрения в виде порошка или растворов (суперфосфат и др.);

          измельченный бытовой мусор.

        В качестве основных сооружений для биохимической очистки ПСВ применяют те же, что и при очистке бытовых сточных вод (аэротенки, высоконагружаемые биофильтры, поля фильтрации, биопруды и т.д.). Если БПК 20

        < 500 мг/л, применяют обычные аэротенки–вытеснители (АВ); при БПК 20 > 500 мг/л – аэротенки–смесители (АС), предложенные проф. Н.А.Базякиной.

        Преимущество аэротенков–смесителей в том, что скорость потребления кислорода в аэротенке постоянная.

        Аэротенки–вытеснители (АВ) представляют собой сооружения, в которых очищаемая сточная вода постепенно перемещается от места впуска к месту ее выпуска. При этом не происходит активного перемешивания поступающей сточной воды с ранее поступившей, протекающие в этих сооружениях процессы биохимического окисления загрязнений характеризуются переменной скоростью реакции, поскольку концентрация органических загрязнений уменьшается по ходу движения воды. Аэротекнки–вытеснители весьма чувствительны к изменению концентрации органических веществ в поступающей воде, особенно к залповым поступлениям со сточными водами токсических веществ, поэтому такие сооружения рекомендуется применять для очистки городских и близких по составу к бытовым промышленных сточным водам при исходной БПК 20 < 500 мг/л. Иногда для выравнивания скорости окисления органических веществ в аэротенках – вытеснителях предусматривается дифференцированная подача воздуха.

        Преимущества аэротенков–вытеснителей по сравнению с аэротеками– смесителями:

      • простота конструкции;

        меньший объем и стоимость. Недостатки:

      чувствительность к изменению концентрации органических соединений и токсичных веществ.

    В них выравнивается скорость потребления кислорода во всех частях сооружения за счет интенсивного смешения поступающей жидкости с водой, находящейся в нем. Оно достигается децентрализованным впуском поступающей воды и активного ила или только поступающей воды. На таких сооружениях можно очищать воду с БПК20 до 1000 мг/л.

    Рис. 102. Аэротенк – смеситель (поперечное сечение)

    Для высококонцентрированных сточных вод (при БПК 20 1000 мг/л) широко применяют 2–х ступенчатые схемы очистки:


      Аэротенк I –й ступени – смеситель;

      Аэротенк II –й ступени – вытеснитель.

    При этом I ступень устраивается с регенерацией активного ила; II ступень – без регенерации.



    Рис. 103. Схема двухступенчатой очистки сточных вод в аэротенках



    Аэроакселераторы–аэротенки – отстойники с пневмомеханической си-

    стемой аэрации. От известных аэротенков–отстойников с механической аэрацией они отличаются наличием пневматической аэрации.

    Это позволяет повысить окислительную мощность сооружений, сократить время биологической очистки.

    Аэроакселераторы бывают с центральным расположением камеры аэрации, периферийным и смежным.

    Достоинства аэроакселераторов:

      Хорошее перемешивание.

      Возможность регулирования подачи воздуха.

    3. Устойчивость к пиковым колебаниям расходов и концентрации. Применяются при Q = 1…2 тыс.м 3 /сут (до 7…10 тыс.м 3 /сут).

    Оксиконтакты–аэротенки – отстойники с пневматической аэрацией и расположением аэраторов равномерно по площади днища.





    Рис. 104 Аэроакселераторы: а – с периферийно расположенной камерой аэрации; б –со смежно расположенной камерой аэрации; в –большой производительности с центральным расположением камеры аэрации и удаления осадка скребками; 1 – подача сточной воды; 2

    – подача сжатого воздуха; 3 – зона аэрации; 4 –пневмомеханический аэратор; 5 – отражатели; 6 – дегазатор; 7 – зоны отстаивания; 8–илоуплотнитель; 9 – выпуск очищенных сточных вод; 10 – выпуск избыточного ила.



    Рис. 105. Оксиконтакт с пневматическими аэраторами типа «Вибрейр»: 1 – подача сточной воды; 2 – подача сжатого воздуха; 3 – зона аэрации; 4 – аэраторы “Вибрейр”; 5 – перегородка; 6 – дегазатор; 7 – зоны отстаивания; 8 – илоуплотнитель; 9 – выпуск очищенных сточных вод; 10 – выпуск избыточного ила.

    Используются специальные аэраторы типа “Вибрейр”.

    Оксиконтакты предназначены для больших расходов СВ. Оксирапиды – аэротенки–отстойники коридорного типа с пневматической аэрацией и принудительной подачей циркулирующего активного ила эрлифтом в зону аэрации. Применяются при Q = 10…50 тыс. м 3 /сут; позволяют работать с высокой нагрузкой по БПК 20 на активный ил. При оборудовании зоны отстаивания их тонкослойными блоками производительность оксирапидов возрастает в 1,5… 1,7 раза.

    Фильтртенки – аэротенки–отстойники, в зоне аэрации которых расположены специальные фильтрующие элементы, что обеспечивает их работу при очень высоких дозах активного ила А = 12…25 г/л (обычный аэротенк А = 2…2,5 г/л, аэротенк–отстойник А = 3…6 г/л) и высокую окислительную мощность (10…12 кг БПК 20 на 1 м 3 /сут.), также сокращает время аэрации.



    Фильтртенки применяются при БПК 20 СВ до 2000 мг/л.

    Окситенки – аэротенки–отстойники с механической аэрацией, в которых вместо воздуха используется технический кислород или обогащенный кислородом воздух.







    Рис. 107 Фильтртенк: 1 – подача сточной воды; 2 – зона аэрации; 3 – лоток циркулирующего активного ила; 4 – лоток поступающей сточной воды; 5 – фильтровальные элементы; 6 – камера дегазации; 7 – зона отстаивания; 8 – водосборный лоток; 9 – ферма илососов с мостиком обслуживания; 10 – илососы; 11 – трубопровод циркулирующего активного ила; 12

      то же, избыточного ила; 13 – воздуховод; 14 – эрлифт; 15 – иловая камера.


      Противоточные аэротенки – аэротенки–отстойники с особой схемой принудительной циркуляции воздушно-иловой смеси, что обеспечивает возможность повышения дозы ила до А = 5…6 г/л и окислительной мощности приблизительно в 2 раза.

      При расчете аэротенков–отстойников объем зоны аэрации определяют, как для аэротенков–смесителей, объем зоны отстаивания определяют исходя из расчетного расхода и времени отстаивания около 1 ч. Площадь живого сечения отстойника по скорости восходящего потока v 0,3 мм/с, площадь зоны дегазации по скорости всплывания пузырьков в иловом слое v в 100 мм/с.

      Для глубокой биологической очистки СВ в России, Германии, Японии, США применяются также сооружения типа "Биодиск".



      Рис. 108 Схема сооружения типа биодиск в блоке с отстойником: 1 – камера впуска сточных вод; 2 – лоток; 3 – биодиски; 4 – илопровод; 5 – отстойник; 6 – камера выпуска очищенной воды; 7 – трубопровод к иловой насосной станции


      Принцип их работы:

      Диски собирают из отдельных листов (слоев) пенопласта, пластика, алюминия; толщина листов 2...2,5мм (пенопласт – 20мм). Эти листы укрепляют на горизонтальном валу на расстоянии 15...20 мм друг от друга. Листы частично погружены в емкость со сточной водой и приводятся в медленное вращение; на их поверхности образуется биопленка слоем 4...5 мм. Необходимый кислород для жизнедеятельности бактерий поступает из атмосферного воздуха.


      Контрольные вопросы


      1. Назначение и условия применения биологической очистки производственных сточных вод.

        От чего зависит суммарное количество органических веществ, которое может быть разрушено микроорганизмами?

      3.От чего зависит скорость изъятия органических веществ и их окисление?

        На какие стадии условно разделяют процесс биологической очистки?

        Что оказывает влияние на ход биохимического процесса очистки?

        Что показывает биохимическое потребление кислорода?

        Что показывает химическое потребление кислорода?

        От чего зависит прирост биомассы?

        Требования к промышленным сточным водам, направленным на биологическую очистку.

        Конструкции сооружений для биологической очистки производственных сточных вод (аэротенки-вытеснители).

        Когда можно очищать воду на аэротенках-смесителях и какова особенность их конструкции?

        Какие комбинированные сооружения для биохимической очистки известны?


    Биохимическое окисление - широко применяемый на практике метод очистки производственных сточных вод. Главным действующим началом при биохимической очистке являются микроорганизмы, использующие в качестве питательных веществ и источников энергии растворенные органические и неорганические соединения. Из них микроорганизмы берут все необходимое для размножения, увеличивая при этом активную биомассу.

    Загрязняющие сточную воду вещества при их аэробной биохимической очистке окисляются активным илом, представляющим собой биоценоз, обильно заселенный микроорганизмами. Активный ил разрушает органические и неорганические соединения в специальных сооружениях - аэротенках - в условиях аэрации воздухом сточной воды и ила, находящегося благодаря аэрации во взвешенном состоянии. В процессе очистки микроорганизмы активного ила, контактируя с органическими и неорганическими веществами сточных вод, разрушают их при помощи различных ферментов.

    Для создания протоплазмы клетке микроорганизмов нужны биогенные элементы: углерод, азот, кислород, водород, фосфор, калий, железо, магний и различные микроэлементы. Многие из этих элементов бактериальная клетка может почерпнуть из загрязнений сточных вод коксохимического производства. Недостающие элементы, чаще всего фосфор и реже калий, приходится добавлять в очищаемую сточную воду в виде ортофосфорной кислоты и соли (марганцовокислый калий).

    Для нормального процесса синтеза клеточного вещества, а следовательно, и для эффективного процесса очистки сточной воды в среде должна быть достаточная концентрация всех основных биогенных элементов, которая для сточных вод коксохимического производства определяется соотношением:

    БПК полн: N: Р = 100: 5: 1, (2)

    где БПК - полная биологическая потребность в кислороде, мг О/л;

    N - концентрация азота, мг/л;

    Р - концентрация фосфора, мг/л.

    Способ биохимической очистки обычно применяется для очистки промышленных сточных вод после обработки их физико-химическими методами, при помощи которых из вод удаляются не поддающиеся биологическому разрушению токсичные вещества и снижается концентрация загрязнений. Возможность биохимической очистки сточных вод определяется соотношением БПК полного к ХПК, которое должно быть меньше 0,4.

    К числу преимуществ метода биохимической очистки относится способность разрушать различные классы органических соединений, однако, ряд органических соединений не подвергаются биохимическому окислению. Отдельные органические соединения распадаются, но продукты распада не окисляются до углекислого газа и воды Эти продукты распада могут быть иногда даже более токсичны, чем исходные вещества. Иногда биохимическое окисление невозможно из-за высокой концентрации загрязнений в сточной воде, оказывающей токсичное влияние на микроорганизмы.

    Биохимический распад того или иного вещества зависит от ряда химических и физических факторов, как, например, наличия функциональных групп в молекуле, величины молекулы и ее структуры, растворимости вещества, образования промежуточных продуктов и их взаимодействия и других. Образование промежуточных продуктов обуславливается также биологическими факторами - сложностью обменных процессов в клетках микроорганизмов, вариабельностью штаммов бактерий, влиянием среды и длительностью адаптации микроорганизмов. Рассмотрим литературные данные о связи структуры некоторых веществ, содержащихся в сточных водах коксохимического производства, и их способности к биохимическому распаду. Экспериментально доказано, что бензол в незначительной степени окисляется микроорганизмами, производные его с короткой боковой целью, например, толуол, разлагаются несколько легче. Двухатомные фенолы успешно окисляются адаптированным комплексом бактерий, причем пирокатехин вдвое быстрее, чем резорцин. Наиболее трудно окисляется гидрохинон. При окислении многоатомных фенолов образуются окрашенные хиноидные соединения. Возможность биохимического окисления фенола известна уже давно. В Советском Союзе для очистки от фенола сточных вод коксохимического производства с 1952 года используется бактериальный комплекс - фенолразрушающие микроорганизмы, выделенные из почвы коксохимического завода Киевским институтом общей и коммунальной гигиены (Путилиной Н.Т. с сотрудниками). Применив этот комплекс для обогащения активного ила, нарастающего при очистке фенольной сточной воды в аэротенках, Киевский институт общей и коммунальной гигиены и Гипрококс назвали метод очистки "микробным". Это условное название употребляется и до настоящего времени, хотя по существу это биохимическая очистка активным илом, обогащенным фенол - и роданразрушающими микроорганизмами.

    Работами многих исследователей установлена последовательность разрушения фенола микроорганизмами и выделены образующиеся при этом промежуточные продукты. Биохимическое окисление фенола идет стадийно через пирокатехин, цис-цис-муконовую кислоту, лактон, в - кетоадипиновую кислоту, янтарную кислоту, уксусную кислоту. Конечными продуктами биохимического окисления фенола являются углекислый газ и вода.

    В сточных водах коксохимического производства содержатся роданиды. Исследования показали, что биохимическое окисление последних роданразрушающими микроорганизмами идет с образованием ионов аммония и сульфата. Эффективность биохимической очистки зависит от ряда факторов, основными из которых являются: температура, реакция среды (pH), кислородный режим, наличие биогенных элементов и токсичных веществ, уровень питания.

    Оптимальной температурой, при которой хорошо развиваются фенол - и роданразрушающие микроорганизмы, является 30-35°С. Активная жизнедеятельность данных микроорганизмов сохраняется при 20-40°С. Если температурный режим не соответствует оптимальному, то рост культуры, а также скорость обменных процессов в клетке заметно ниже расчетных значений. Наиболее неблагоприятное влияние на развитие культуры оказывает резкое изменение температуры. При аэробной очистке отрицательное влияние повышенной температуры усугубляется еще вследствие соответствующего уменьшения растворимости кислорода.

    Концентрация водородных ионов (pH) существенно влияет на развитие микроорганизмов. Фенол - и роданразрушающие микроорганизмы лучше всего развиваются в среде с pH 6,5-8,0. Отклонение pH за пределы 6 - 9 влечет за собой уменьшение скорости окисления вследствие замедления обменных процессов в клетке, нарушения проницаемости ее цитоплазматической мембраны и др., что приводит к ухудшению биохимической очистки. При pH ниже 5 и выше 10 происходит гибель микроорганизмов. Если значения температуры и pH выходят за пределы оптимальных и, особенно, допустимых величин, необходимо корректировать эти параметры в сточных водах, поступающих на биохимическую очистку. В фенольных сточных водах коксохимического производства содержится значительное количество аммиака и солей аммония; незначительное количество аммонийного азота потребляется в процессе жизнедеятельности фенол - и роданразрушающих микробов, но одновременно при окислении роданидов из азота роданид-ионов образуется дополнительное количество аммонийного азота. По существующим нормам сброса сточных вод в городскую канализацию для доочистки на городских очистных сооружениях содержание аммонийного азота в очищенных фенольных водах на 2 и более порядков выше допустимого.

    Полная биохимическая очистка сточных вод от аммонийного азота включает две стадии: нитрификацию - окисление аммонийного азота под действием нитрифицирующих бактерий в присутствии кислорода воздуха вначале до нитритов, а затем до нитратов; денитрификацию - восстановление нитритов и нитратов под действием комплекса денитрифицирующих бактерий в присутствии необходимого количества органических соединений. Процесс нитрификации успешно протекает при pH 7-9; при окислении аммонийного азота до нитритов происходит образование кислоты (из двух молей азота по реакции образуется четыре моля водородного иона), которую необходимо нейтрализовать для нормального протекания процесса нитрификации. При денитрификации происходит образование гидроксильного иона (по реакции при восстановлении двух молей нитратов до атомарного азота выделяется два гидроксильных иона О Н-), то есть некоторая компенсация потерянной при нитрификации щелочности воды. Поэтому для уменьшения расхода щелочных агентов на стадии нитрификации необходимо организовать процесс очистки таким образом, чтобы максимально использовать щелочность, образующуюся на стадии денитрификации. При денитрификации можно исключить подачу кислорода воздуха или оставить ее в незначительном количестве, поскольку денитрифицирующие бактерии используют кислород, связанный в нитриты и нитраты. По данным ВУХИН при денитрификации содержание кислорода в воде не должно превышать 0,1 мг/л.

    В качестве органического питания на стадии денитрификации предложен ряд легкоокисляемых органических соединений, а также избыточный активный ил или часть неочищенной фенольной воды. В процессе потребления микроорганизмами питательных веществ, содержащихся в сточных водах, в микробной клетке протекают два взаимосвязанных и одновременно происходящих процесса - синтез протоплазмы и окисление органических веществ. В процессе окисления клетки потребляют кислород, растворенный в сточной воде. В аэробных биологических системах подача воздуха (а также чистого кислорода или воздуха, обогащенного кислородом) должна обеспечивать постоянное наличие в воде растворенного кислорода не ниже 2 мг/л. Система аэрации обеспечивает также перемешивание воды и постоянное поддерживание ила во взвешенном состоянии. В технической литературе за меру уровня питания принимают величину сугочной нагрузки по загрязнениям в расчете на 1 м3 очистного сооружения, или на 1 г сухой биомассы, или на 1 г беззольной части биомассы. В практике оценки очистных сооружений коксохимических предприятий оперирует, в основном, величиной суточной нагрузки по отдельным загрязнениям и по ХПК на 1 м 3 аэротенка, которую принято называть окислительной мощностью сооружения. Обычно эту величину выражают в килограммах кислорода на 1 м 3 в сутки (кг О/м 3 в сутки).

    Токсичным действием на биохимическое окисление могут обладать как органические, так и неорганические соединения, а также металлы. В результате токсичного действия веществ задерживается рост и развитие микроорганизмов или они погибают. В сточных водах коксохимического предприятия содержится большое количество веществ, которые тормозят развитие микроорганизмов, а некоторые могут привести к их гибели.

    Отрицательное воздействие на процесс биохимической очистки сточных вод оказывает повышенная минерализация стока. Верхним пределом минерализации производственных сточных вод, поступающих в аэротенки, считается содержание солей в количестве 10 г/л. Резкие колебания в степени минерализации неблагоприятно отражаются на качестве очищенного стока. Осмотический шок, вызываемый минеральными солями, приводит к выделению органического вещества из клеток ила, что ведет к нарушению окислительных процессов. Низкие гидравлические нагрузки и высокие концентрации активного ила делают менее заметным влияние повышенных концентраций солей на эффективность работы аэротенков. Самыми важными факторами формирования биоценоза илов биохимических установок являются состав очищаемых сточных вод и величина нагрузки на ил. Действие других факторов - температуры, перемешивания, концентрации растворенного кислорода - практически не изменяет качественного состава илов, но влияет на количественное соотношение различных групп микроорганизмов. Основными факторами, влияющими на продолжительность процесса биохимической очистки, являются концентрация поступающих загрязнений, необходимая степень очистки, химическая природа загрязнения и концентрация активного ила.

    Для проектирования биохимических установок коксохимических предприятий обычно принимается следующий состав сточных вод, поступающих в аэротенки (в мг/л): фенолы 400, роданиды 400, цианиды 20, общие масла 35, аммиак летучий до 250, аммиак общий 500, ХПК 3000. Состав очищенной воды по основным загрязнениям при проектировании современных биохимических установок (в мг/л): фенолы 0.5 - 2; роданиды 1-3; цианиды до 5, общие масла 10-20, ХПК 300-500. Общая загрязненность сточных вод до и после очистки достаточно полно характеризуется аналитически определяемой величиной ХПК (химической потребности в кислороде для окисления). Для биохимического окисления веществ обобщающим показателем обычно является величина БПК (биологической потребности в кислороде), которая определяется экспериментально при биохимическом окислении веществ в течение 5-ти суток - БПК 5 , 20-ти суток - БПК 20 или БПК полн.). В фенольных стоках коксохимического производства большая часть загрязнений биохимически трудно окисляется, поэтому для этих вод более показательна величина ХПК. Определенное представление о некоторых веществах в сточных водах коксохим производства дают литературные данные об удельных значениях ХПК отдельных веществ (в мг О/мг вещества), а также о соотношении БПК и ХПК - чем оно ниже, тем более легко происходит биохимическое окисление вещества.

    Таблица 4. ХПК и соотношении БПК и ХПК в сточных водах коксохимического производства

    Повышая дозу активного ила в аэротенках, следует иметь в виду, что при высокой концентрации биомассы (в практике можно поддерживать 5-6 г/л) не сохраняется прямая пропорция между концентрацией ила и скоростью окисления загрязнений. Скорость биохимического окисления уменьшается при повышении начальной дозы ила из-за ухудшения питания отдельных клеток. Сточные воды различных предприятий могут сильно различаться по содержанию отдельных загрязнений, следовательно, необходимо экспериментально определять оптимальную концентрацию активного ила для каждой биохимической установки.

    При двухступенчатой очистке сточных вод на первой ступени (обесфеноливании) активный ил (точнее - биомасса) обычно мелкодисперсный, плохо отстаивающийся, поэтому для поддержания необходимой концентрации биомассы в аэротенке в них осуществляется возврат очищенной воды (до 50% и более) из сборника обесфеноленных вод.

    На второй ступени очистки (обезроданивании) образуются хорошо оседающие хлопья активного ила (за счет обогащения биомассы простейшими микроорганизмами, которые являются индикатором достаточно глубокой очистки). Возврат сгущенного активного ила из вторичных отстойников технически должен быть организован таким образом, чтобы не разрушать хлопья активного ила (поэтому предпочтительно возврат производить с помощью эрлифтного, а не центробежного насоса). Целесообразно перед подачей возврата ила в аэротенок направлять его через специальную емкость с аэрацией сжатым воздухом (регенератор ила). Повышение концентрации активной биомассы в аэротенках можно осуществлять переоборудованием их в биотенки, то есть заполнением части объема аэротенка неподвижно закрепленным пористым материалом (на котором нарастает и закрепляется биопленка), либо использованием плавающим в объеме аэротенка твердым сорбентом (биосорбционная очистка).

    Резкие колебания концентрации поступающих со сточной водой загрязнений приводят к нарушению биохимической очистки. Чтобы компенсировать эти колебания биохимические установки оборудуются усреднителями. Стабилизировать, а также повысить глубину очистки сточных вод позволяет переоборудование усреднителей в предаэротенки: в усреднители подается очищенная сточная вода с активным илом в количестве 10 - 20 % от поступающей фенольной воды, и несколько увеличивается количество подаваемого для перемешивания воды в усреднителе сжатого воздуха - до 30м 3 /м 3 поступающей сточной воды. Происходящее в предаэротенке небольшое разбавление исходной воды очищенной водой также благоприятно влияет на дальнейшую биохимическую очистку. Опыт эксплуатации показал, что в предаэротенке окисляется 25-30% поступающих фенолов, существенно уменьшается отрицательное влияние залповых сбросов на жизнедеятельность активного ила в аэротенках.

    Эффективность биохимической очистки во многом определяется конструкцией аэрационных систем. На отечественных биохимических установках испытаны различные аэрационные системы: пневматическая, пневмомеханическая, механическая. Выбор аэрационной системы должен основываться на сравнении их эффективности, производительности по кислороду, степени использования кислорода воздуха, а также на оценке эксплуатационных достоинств и недостатков. Кроме того, для обеспечения достаточно полной биохимической очистки аэрационная система должна обеспечивать также хорошее перемешивание сравнительно больших количеств активного ила, а при значительном объеме аэрационных сооружений не вызывать переохлаждения сточной воды (это особенно значимо при окислении роданидов).

    Пневматическая аэрация через перфорированные металлические или пластмассовые трубы (среднепузырчатая система аэрации) дает очень низкий коэффициент использования кислорода воздуха - около 2%; кроме того поддержание активного ила во взвешенном состоянии недостаточно удовлетворительное. Достаточно высокие окислительные способности (то есть количество кислорода, вносимого в единицу времени) и степень использования кислорода воздуха отмечены при применении пневмомеханической системы аэрации. Однако сложность эксплуатации этих систем (связанная, в частности, с тяжелыми условиями работы электродвигателей и редукторов в парах воды и химзагрязнений над аэротенком) была основной причиной того, что они не получили распространения. Кроме того, применение механического поверхностного аэратора вызывает существенное снижение температуры очищаемой воды, что недопустимо в зимнее время, особенно на заводах Украины. Современные биохимические установки на коксохимических заводах - довольно мощные сооружения. С учетом климатических условий, эксплуатационных затрат на обслуживание и ремонт, возможностей управления процессом биохимической очистки наиболее целесообразно сооружать центральную воздуходувную станцию, а в качестве аэрационной системы использовать эрлифтные аэраторы, которые одновременно обеспечивают хорошее перемешивание жидкости в аэротенке. Первые испытания эрлифтной системы аэрации, проведенные в 70-х годах Несмашным на Криворожском коксохимическом заводе, показали безусловные преимущества этой системы аэрации. В последующие годы благодаря систематическим исследованиям и разработкам, проведенным в ВУХИНе (В.Г. Плаксиным, В.М. Кагасовым, А.В. Говорковым, А.В. Путиловым, И.В. Пименовым и др.) была создана оптимальная система эрлифтной аэрации, которая обеспечивает эффективную аэрацию при высоких нагрузках по сточной воде и воздуху, интенсивное перемешивание жидкости и необходимые придонные скорости жидкости в емкостях большого объема. Степень использования кислорода воздуха б зависимости от нагрузки по воздуху на аэратор и уровня жидкости в емкости составляет 10-25%. Основные технические характеристики системы для варианта установки в аэротенке объемом 400 м3 и уровне жидкости 4 м: расход воздуха 2000 (и более) м 3 /ч, количество аэраторов 45-70, диаметр аэраторов 0,5 - 0,3 м, высота аэратора 1-2 м, приведенная скорость жидкости в аэраторе 1,5 - 2,5 м/с, придонные скорости жидкости более 0.3 м/с, кратность циркуляции не менее 50 l/ч, коэффициент использования кислорода 20-25%, количество вносимого кислорода 120-150 кг/ч, эффективность аэрации 2.35 - 2.95 кг кислорода/квт. ч, перепад давления на газораспределительном устройстве 1000-1500 Па, размеры пузырей не более 6 мм. На большинстве действующих биохимических установок наиболее распространена в настоящее время эрлифтная система аэрации с коэффициентом использования кислорода 12%. Практический опыт работы показал, что высота аэратора должна быть на 0,3м ниже уровня воды в аэротенке, чтобы предотвратить образование волны.

    При эксплуатации аэротенков в них наблюдается образование большого количества пены. Причиной образования устойчивых пен является присутствие в сточных водах поверхностно-активных веществ и стабилизаторов пены: тонкодисперсных порошков кокса, пека; жидких полимеров; компонентов каменноугольной смолы, входящих в нерастворимые в толуоле вещества. Стабилизатором пены является также мелкодисперсный активный ил. По мере укрупнения активного ила его стабилизирующее воздействие на пену снижается. Гидравлический способ гашения пены малоэффективен для аэротенков с большой поверхностью, так как трудно обеспечить распределение воды равномерно по всей поверхности, к тому же большое количество воды, подаваемой для гашения пены, нарушает нормальный процесс очистки. Наиболее эффективно использовать аэротенки с перекрытием и подсводовым пространством высотой до 2 м: при этом пенс разрушается поступающей сточной водой и очищенной водой, возвращаемой из вторичного отстойника. Практика показала, что высота слоя пены не превышает 1,5 - 2м. Наличие перекрытия аэротенка позволяет осуществить организованный выброс отработанного воздуха и реализовать мероприятия по очистке его от вредных выбросов в атмосферу. Инженерное оформление схемы биохимической очистки принципиально изменилось за два последних десятилетия: подача воды в аэротенки производится насосами, а не самотеком, это облегчает регулировку гидравлических нагрузок, контроль расходов, позволяет в процессе эксплуатации изменять направление потоков с наименьшими затратами; появились и хорошо зарекомендовали себя металлические аэротенки в надземном исполнении (это, в частности, исключает загрязнение окружающей территории за счет неплотностей сооружений, характерных при сооружении аэротенков из сборного железобетона).

    При проектировании биохимических установок приняты следующие основные расчетные зависимости (их необходимо также использовать в процессе эксплуатации при анализе работы установки): Объем аэротенков 1-й и 2-й ступеней (V) определяется на основе окислительной мощности по фенолам и роданидом соответственно (в м 3)

    С 1 и С 2 - концентрации окисляемого вещества соответственно до и после очистки, мг/л;

    ОМ - окислительная мощность аэротенка (в кг окисляемого вещества на 1 м 3 аэротенка в сутки).

    Окислительная мощность зависит от исходной концентрации вещества, состава сточных вод, эффективности аэрации и других факторов; определяется экспериментально. Для сточных фенольных вод коксохимических предприятий окислительная мощность по фенолам находится в пределах 0,6-1,2; для роданидов 0,6 - 0,4 (то есть в 2 - 3 раза ниже, чем для фенолов).

    Расход воздуха в аэротенки (Q в) рассчитывается по формуле (в нм 3 /ч):

    где: L - количество сточной воды, м 3 /ч;

    ХПК 1 и ХПК 2 - окисляемость сточной воды соответственно до и после очистки (мг О / л воды);

    К 1 - коэффициент запаса (обычно принимают 1,2 - 1,25);

    0,21 - объемная доля кислорода в воздухе;

    0,8 - коэффициент использования растворенного кислорода для окисления загрязнений;

    1,429 - плотность кислорода при нормальных условиях (кг/нм 3);

    q - коэффициент использования кислорода воздуха для данной системы аэрации (%).

    Биохимический показатель



    Влияние различных факторов на скорость

    Биохимического окисления

    Скорость окисления зависит от концентрации органических ве­ществ, равномерности поступления сточной воды на очистку и от содержания в ней примесей. При заданной степени очистки основ­ными факторами, влияющими на скорость биохимических реакций, являются концентрация потока, содержание кислорода в сточной воде, температура и рН среды, содержание биогенных элементов, а также тяжелых металлов и минеральных солей.

    Турбулизация сточных вод в очистных сооружениях способству­ет повышению скорости очистки. Турбулизация потока достигается интенсивным перемешиванием, при котором активный ил находится во взвешенном состоянии, что обес­печивает равномерное распределение его в сточной воде.

    Важнейшим свойством активного ила является его способность к оседанию. Свойство оседания описывается величиной илового индекса, представляющего собой объем в мл, занимаемый 1 г ила в его естественном состоянии после 30 мин отстаивания. Плохая оседаемость ила ведет к повышенному выносу его с очищенной водой и ухудшению качества очистки. Доза активного илазависит от илового индекса.



    Для очистки следует применять свежий активный ил, который хорошо оседает и более устойчив к колебаниям температу­ры и рН среды.

    Установлено, что с повышением температуры сточной водыско­рость биохимической реакции возрастает. Однако на практике ее поддерживают в пределах 20-30 °С. Превышение указанной температу­ры может привести к гибели микроорганизмов. При более низких температурах снижается скорость очистки, замедляется процесс адап­тации микробов к новым видам загрязнений, ухудшаются процессы нитрификации, флокуляции и осаждения активного ила. Повыше­ние температуры в оптимальных пределах ускоряет процесс разло­жения органических веществ в 2-3 раза. С увеличением температу­ры сточной воды уменьшается растворимость кислорода, поэтому для поддержания необходимой концентрации его в воде требуется производить более интенсивную аэрацию.

    Активный ил способен сорбировать соли тяжелых металлов. При этом снижается биохимическая активность ила и происходит вспухание его из-за интенсивного развития нитчатых форм бакте­рий.

    Отрицательное влияние на скорость очистки может оказать и по­вышение содержания минеральных веществ, находящихся в сточной воде, выше допустимых концентраций.

    Перенос кислорода из газовой фазы к клеткам микроорганизмов происходит в два этапа. На первом этапе происходит перенос кисло­рода из воздушных пузырьков в основную массу жидкости, на вто­ром – перенос абсорбированного кислорода из основной массы жид­кости к клеткам микроорганизмов, главным образом, под действием турбулентных пульсаций.

    Количество абсорбируемого кислорода может быть вычислено по уравнению массоотдачи:

    где М – количество абсорбированного кислорода, кг/с; β V - объем­ный коэффициент массоотдачи, с -1 ; V – объем сточной воды в со­оружении, м 3 ;

    с р, с – равновесная концентрация и концентрация кис­лорода в основной массе жидкости, кг/м 3 .

    Исходя из уравнения массоотдачи, количество абсорбируемого кислорода может быть увеличено за счет роста коэффициента массоотдачи или движущей силы. Изменения движущей силы воз­можны в результате увеличения содержания кислорода в воздухе, уменьшения рабочей концентрации или повышения давления про­цесса абсорбции. Однако все эти пути или экономически невыгод­ны, или не приводят к значительному росту интенсивности процесса.

    Наиболее надежный способ увеличения подачи кислорода в сточ­ную воду – это повышение объемного коэффициента массоотдачи.

    Для успешного протекания реакций биохимического окисления необходимо присутствие в сточных водах соединений биогенных эле­ментов и микроэлементов: N, S, Р, К, Мg, Са, Nа, С1, Fе, Мn, Мо, Ni, Со, Zn, Сu и др. Среди этих элементов основными являются N, Р и К, которые при биохимической очистке должны присутствовать в необходимых количествах. Содержание остальных элементов не нор­мируется, так как их в сточных водах достаточно.

    Недостаток азота тормозит окисление органических загрязните­лей и приводит к образованию трудно оседающего ила. Недостаток фосфора приводит к развитию нитчатых бактерий, что является ос­новной причиной вспуханий активного ила, плохого оседания и вы­носа его из очистных сооружений, замедления роста ила и снижения интенсивности окисления. Биогенные элементы лучше всего усваиваются в форме соединений, в которой они находятся в микробных клетках: азот – в форме аммонийной группы NН 4 + , а фосфор – в виде солей фосфорных кислот.

    При нехватке азота, фосфора и калия в сточную воду вводят раз­личные азотные, фосфорные и калийные удобрения. Соответствую­щие соединения азота, фосфора и калия содержатся в бытовых сточ­ных водах, поэтому при их совместной очистке с промышленными стоками добавлять биогенные элементы не надо.

    Конструкции аэротенков

    В аэротенке-отстойнике (рис. 17) зона аэрации отделена от зоны отстаивания. Сточная вода подается в центре, а отводится по лотку 1. В зоне отстаивания образуется слой взвешенного активного ила, через который фильтруется сточная вода. Избыточный активный ил отводится из зоны взвешенного слоя по трубам, а возвратный ил поступает в зону аэрации.

    Рис. 17. Аэротенк-отстойник: 1 – лоток; 2 –

    Иначе устроен аэротенк-осветлитель (рис. 18). Сточная вода поступает в зону аэрации, где смешивается с активным илом и аэрируется. Затем смесь через окна 1 направляется в зону осветления и зону дегазации. В зоне осветления возникает взвешенный слой активного ила, через который фильтруется иловая смесь. Очищенная вода поступает в лотки и удаляется из аэротенка.

    Рис. 18. Аэротенк-осветлитель: 1 –

    Для интенсификации процесса биохимической очистки сточные воды перед аэротенком предлагается обрабатывать окислителями (озоном) с целью снижения ХПК. Для этой цели разработан процесс очистки сточных вод в глубоких шахтах. В них устанавливают вертикальные трубы, доходящие почти до дна шахты. Сточная вода подается по трубам одновременно с воздухом. Под действием высокого гидростатического давления кислород воздуха почти полностью растворяется в сточной воде. При этом степень его использования микроорганизмами увеличивается. Иловая смесь по подъемной трубе поднимается вверх, и после дегазации поступает в отстойник. Очистная установка занимает небольшую площадь. При ее работе отсутствует выделение запахов и достигается высокая степень очистки.

    Обработка осадков

    В процессе биохимической очистки в первичных и вторичных отстойниках образуются большие массы осадков, которые необходимо утилизировать или обрабатывать с целью уменьшения загрязнения биосферы. Осадки сточных вод могут быть в основном минерального состава, в основном органического состава и смешанные. Они характеризуются содержанием сухого вещества, содержанием беззольного вещества, элементным составом, гранулометрическим составом.

    Во вторичных отстойниках в осадке находится в основном избыточный активный ил, объем которого в 1,5-2 раза больше, чем объем осадка из первичного отстойника. В осадках содержится свободная и связанная вода, свободная вода (60-65 %) может быть легко удалена из осадка, связанная вода (30-35 %) – коллоидно-связанная и гигроскопическая, удаление которой затруднено.

    Для обработки и обезвреживания осадков используются различные технологические процессы, представленные на рис. 20.

    Уплотнение активного ила связано с удалением свободной влаги и является необходимой стадией всех технологических схем обработки осадков. При уплотнении удаляется в среднем 60 % влаги и масса осадка сокращается в 2,5 раза. Для уплотнения используют гравитационный, флотационный, центробежный и вибрационный методы.

    Процесс стабилизации осадков проводят для разрушения биологически разлагаемой части органического вещества на диоксид углерода, метан и воду. Стабилизацию ведут при полощи микроорганизмов в анаэробных и аэробных условиях.

    Рис. 20. Схемы процессов обработки осадка

    Кондиционирование осадков проводят для снижения удельного сопротивления и улучшения водоотдачи вследствие изменения форм связи воды. Кондиционирование проводят реагентными и безреагентными способами. При реагентной обработке осадка происходит коагуляция с разрывом сольвентных оболочек и улучшаются водоотдающие свойства.

    К безреагентным методам обработки относятся тепловая обработка, замораживание с последующим отстаиванием, жидкофазное окисление, электрокоагуляция и радиационное облучение.

    Термическую обработку осадков проводят в случае их подготовки к рекуперации. Сушку осадков проводят в сушилках различной конструкции.

    Биохимическая очистка сточных вод

    Сточные воды, прошедшие физико-химическую очистку, содержат еще достаточно большое количество растворенных, а в ряде случаев сильно диспергированных органических загрязнений. Поэтому дальнейшую очистку таких вод целесообразно проводить биохимическим методом.

    Биохимическая очистка возможна только для производственных сточных вод, загрязненных веществами, которые могут быть окислены микроорганизмами. Используются аэробные и анаэробные методы биохимической очист­ки сточных вод. При аэробной очистке микроорганизмы куль­тивируются в активном иле или биопленке. Анаэробные методы очистки протекают без доступа кислорода; их используют, главным об­разом, для обезвреживания осадков.

    Среди бактерий в очистных сооружениях сосуществуют гетеротрофы и автотрофы, причем преимущественное развитие получает та или иная группа в зависимости от условий работы системы.

    Эти две группы бактерий различаются по своему отношению к источнику углеродного питания. Гетеротрофы используют в качестве источника углерода готовые органические вещества и перерабатывают их для получения энергии и биосинтеза клетки. Автотрофные организмы потребляют для синтеза клетки неорганический углерод, а энергию получают либо за счет фотосинтеза, используя энергию света, либо за счет хемосинтеза путем окисления некоторых неорганических соединений, например, аммиака, нитритов, солей двухвалентного железа, сероводорода, элементарной серы и др.

    Механизм биологического окисления в аэробных условиях гетеротрофными бактериями приводит к наращиванию новой биомассы и выделению CO 2 , N 2 , P:

    органические вещества + O 2 + N 2 + P → микроорганизмы + СO 2 + H 2 O + биологически неокисляемые растворенные вещества

    микроорганизмы + O 2 → CO 2 + H 2 O + N + P + биологически неразрушаемая часть клеточного вещества.

    В очищенном стоке остаются биологически неокисляемые вещества, преимущественно в растворенном состоянии, т.к. коллоидные и нерастворенные вещества удаляются из воды методом сорбции.

    Анаэробный процесс метановой ферментации происходит по следующей схеме:

    органические вещества + H 2 O → CH 4 + CO 2 + C 5 H 7 NO 2 + NH 4 + + HCO 3 –

    Анаэробный процесс денитрификации происходит в две стадии:

    органическое вещество + NO 3 – → NO 2 – + CO 2 + H 2 O;

    органическое вещество + NO 2 – → N 2 + CO 2 + H 2 O + OH – .

    Перечисленные схемы процессов далеко не исчерпывают всех возможностей биоокисления, но именно они наиболее часто встречаются в практике очистки как городских, так и производственных сточных вод.

    Скорость и полнота биохимических превращений в процессе очистки сточных вод определяются условиями биохимической очистки, создаваемыми в аэрационных сооружениях – аэротенках. Существенное влияние на эффективность окислительных процессов оказывают следующие факторы: централизация и децентрализация впуска очищаемых сточных вод и возвратного активного ила, тип аэратора, конструктивные особенности вторичных отстойников. Исследование кинетики окисления показало, что начальный этап процесса окисления с момента смешения сточных вод с активным илом в первые 20-40 мин аэрации характеризуется высокой степенью окислительной активности бактерий, которая затем падает по экспоненциальной зависимости.

    Основными факторами, влияющими на интенсивность процесса, являются следующие:

    · Оптимальный баланс источников углеродного и азотистого питания и обеспечивающий этот баланс технологический режим; наличие биогенных элементов;

    · Исключительная приспособляемость микроорганизмов к изменяющимся условиям существования;

    · Симбиотический характер существования микробных ассоциаций, что позволяет сформировать активный ил с усиленными физиологическими свойствами.

    Для создания специфической микрофлоры необходимо подавать на очистные сооружения концентрированные сточные воды стабильного состава в течение длительного времени. Это способствует индуцированию ферментов, изменяет тип обмена веществ бактериальных клеток и закрепляет приобретенные признаки наследственно. В результате формируется активный ил с повышенными окислительными свойствами, что приводит к росту окислительной мощности сооружений биоочистки. Специфическая микрофлора активного ила способна нивелировать залповые выбросы сточных вод, характеризуемых высокими концентрациями загрязняющий веществ.

    Биохимический показатель

    Сточные воды, направляемые на биохи­мическую очистку, характеризуются величиной БПК и ХПК.

    БПК - это биохимическая потребность в кислороде или количество кисло­рода, использованного при биохимических процессах окисления орга­нических веществ (не включая процессы нитрификации) за опреде­ленный промежуток времени (2, 5, 8, 10, 20 сут), в мг О 2 на 1 мг вещества. Например: БПК 5 - биохимическая потребность в кисло­роде за 5 сут. БПК п - полная биохимическая потребность в кисло­роде до начала процессов нитрификации. ХПК - химическая по­требность в кислороде, т.е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде. ХПК также выражают в мг О 2 на 1 мг вещества.

    Для неорганических веществ, которые практически не поддают­ся окислению, также устанавливают максимальные концентрации. Если такие концентрации превышены, воды нельзя подвергать био­химической очистке.

    Биоразлагаемость сточных вод характеризуется через биохимический показатель, под которым понимают соотношение БПК/ХПК.

    Биохимический показатель является параметром, необходимым для расчета и эксплуатации промышленных сооружений для очист­ки сточных вод. Его значения колеблются в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий биохимический показатель (не больше 0,3); бытовые сточные воды - свыше 0,5. По биохимическому показателю концентрации загрязнений и токсичности промышленные сточные воды делят на четыре группы.

    Первая группа имеет биохимический показатель выше 0,2. К этой группе, например, относятся сточные воды пищевой промышленно­сти (дрожжевых, крахмальных, сахарных, пивоваренных заводов), прямой перегонки нефти, синтетических жирных кислот, белково-витаминных концентратов и др. Органические загрязнения этой груп­пы не токсичны для микробов.

    Вторая группа имеет показатель в пределах 0,02-0,10. В эту груп­пу входят сточные воды коксования, азотнотуковых, коксохимичес­ких, газосланцевых, содовых заводов. Эти воды после механической очистки могут быть направлены на биохимическое окисление.

    Третья группа имеет показатель 0,001-0,01. К ней относятся, на­пример, сточные воды процессов сульфирования. хлорирования, про­изводства масел и ПАВ, сернокислотных заводов, предприятий чер­ной металлургии, тяжелого машиностроения и др. Эти воды после механической и физико-химической локальной очистки могут быть направлены на биохимическое окисление.

    Четвертая группа имеет показатель ниже 0,001. Сточные воды этой группы в основном содержат взвешенные частицы. К этим во­дам относятся стоки угле- и рудообогатительных фабрик и др. Для них используют механические методы очистки.

    Сточные воды первой и второй групп относительно постоянны по виду и расходу загрязнений. После очистки они применимы в системах оборотного водоснабжения. Сточные воды третьей группы образуются периодически и отличаются переменной концентрацией загрязнений, устойчивых к биохимическому окислению. Они загряз­нены веществами, которые хорошо растворимы в воде. Эти воды не­пригодны для оборотного водоснабжения.



    mob_info