Основные узлы токарно-винторезного станка и их назначение. Основные части токарного станка Основные узлы станков токарной группы

С помощью любого , посредством которого может выполняться обработка как металлических, так и неметаллических деталей, осуществляются операции точения.

Конструктивные элементы станков токарно-винторезной группы

Любой , относящийся к категории универсального оборудования, позволяет выполнять следующие виды обработки деталей из различных материалов:

  • развертывание отверстий;
  • обтачивание и растачивание поверхностей различной конфигурации: фасонных, конических, цилиндрических;
  • выполнение зенкерования и сверления;
  • обработка торцов и их подрезка;
  • нарезание резьбы различного типа.

Универсальный любой модели состоит из типовых узлов и механизмов, к которым относятся:

  • суппорт станка;
  • передняя и задняя бабка;
  • коробка, обеспечивающая регулировку скоростей;
  • несущая станина;
  • шпиндель;
  • электрическое оборудование;
  • тумбы оборудования;
  • гитары шестерен;
  • ходовой валик;
  • фартук оборудования;
  • коробка, обеспечивающая выбор и смену подач;
  • основной элемент , отличающий его от обычной токарной модели - ходовой винт.

Что характерно, конструктивные элементы токарно-винторезных станков разных моделей имеют не только одинаковое наименование, но и одинаковое расположение. К примеру, станки данной категории, выпущенные разными производителями (в том числе обладающие числовым программным управлением), практически идентичны по своей конструкции.

Для обеспечения управления всеми рабочими системами в оснащение токарно-винторезных станков входят различные рукоятки и рычаги. Сюда, в частности, относятся:

  • рукоятка, за счет которой выполняется изменение скорости вращения шпинделя;
  • орган управления, отвечающий за выбор параметров нарезаемой резьбы (шаг и подача);
  • рукоятка, отвечающая за выбор категории шага нарезаемой резьбы - увеличенного или нормального;
  • орган управления, определяющий направление движения салазок (продольное или поперечное);
  • рукоятка для управления верхними салазками;
  • элемент управления для включения и отключения вращения ходового винта;
  • управляющий элемент для выбора направления нарезаемой резьбы;
  • включение и отключение основного двигателя;
  • элемент, отвечающий за фиксацию пиноли и автоматический запуск продольной подачи;
  • так называемый штурвал, который отвечает за передвижение пиноли;
  • орган управления параметрами подачи;
  • управления параметрами перемещения суппорта;
  • элемент, отвечающий за фиксацию задней бабки;
  • элемент управления направлением движения шпинделя, а также его остановкой.

Классификация универсальных токарных станков

Выделяют в зависимости от нескольких параметров, к числу которых относятся:

  • масса оборудования;
  • максимальная длина детали, допускаемой к обработке на токарно-винторезном станке;
  • максимальный диаметр такой детали.

Длина детали, обрабатываемой на токарно-винторезном станке той или иной модели, зависит от того, какое расстояние выдержано между его центрами. Если рассматривать диаметр заготовки, которую позволяет обрабатывать конкретный , то данный параметр находится в диапазоне от 100 до 4000 мм. Следует иметь в виду, что модели станков, на которых могут обрабатываться детали одинаковых диаметров, могут отличаться длиной обрабатываемых заготовок.

Универсальные токарные станки могут иметь различный вес. Так, по данному параметру оборудование относят к одной из следующих категорий:

  • тяжелые станки, вес которых может доходить до 400 тонн (на токарно-винторезных станках данной категории можно обрабатывать детали с диаметром 1600–4000 мм);
  • станки весом до 15 тонн (на таком оборудовании можно обрабатывать детали диаметром 600–1250 мм);
  • оборудование массой до 4 тонн (с допустимым диаметром обрабатываемых деталей 250–500 мм);
  • легкие станки, вес которых не превышает 0,5 тонн (на таком оборудовании можно обрабатывать детали с диаметром 100–200 мм).

Легкий универсальный токарный станок - это настольная модель, которая используется, как правило, в домашних мастерских или на небольших предприятиях.

Наиболее распространенными типами предприятий с такими токарно-винторезными станками являются:

  • опытно-экспериментальные участки предприятий различных отраслей промышленности;
  • предприятия, занимающиеся производством часовых механизмов;
  • заводы, выпускающие приборы и контрольно-измерительное оборудование.

Токарно-винторезными станками тяжелой группы оснащают предприятия энергетической и машиностроительной отрасли. Устройства этого типа также применяют для обработки элементов специальных механизмов и узлов – деталей:

  • турбинных механизмов;
  • для оснащения железнодорожного транспорта (колесных пар и др.);
  • для комплектации тяжелого прокатного оборудования.
Однако наибольшее распространение получили токарно-винторезные станки, относящиеся к средней категории. Именно за счет использования таких станков можно выполнять получистовые и чистовые металлообрабатывающие операции, а также нарезать резьбы различных категорий.

Универсальный токарный станок, относящийся к средней категории, обладает целым рядом весомых преимуществ: широкий диапазон подач рабочего инструмента и частот вращения шпинделя, высокая жесткость конструкции и мощность двигателя, позволяющая выполнять широкий перечень работ с заготовками из металла и других материалов.

Токарно-винторезные станки средней категории, кроме того, оснащаются различными механизмами и приспособлениями, которые значительно расширяют их функционал, позволяют делать обработку с большей точностью, делают труд обслуживающего персонала более комфортным и безопасным. Такие элементы дополнительного оснащения, что удобно, позволяют автоматизировать многие процессы обработки заготовок на токарно-винторезных станках.

Отдельно следует сказать о токарно-винторезных станках с числовым программным управлением (ЧПУ), которые в советское время выпускались одновременно несколькими предприятиями. Такими станками, как правило, оснащались предприятия, которые занимались выпуском большой номенклатуры мелкосерийной продукции. Устройство данного типа и возможность его быстрой переналадки делает его просто незаменимым в тех ситуациях, когда необходимо быстро перейти на выпуск деталей другой модификации.

Основные технологии обработки деталей на токарно-винторезных станках

Токарное оборудование, как правило, используется для обработки внешних поверхностей цилиндрической формы. В качестве инструмента в таких ситуациях используется проходной резец. Припуск по длине обрабатываемой детали обычно составляет от 7 до 12 мм. Такой запас размера необходим для того, чтобы можно было отрезать обрабатываемую заготовку на требуемую длину и выполнить обработку ее торцов.

Первый в истории человечества механический токарный станок был изобретен в XVIII веке отечественным умельцем А.К.Нартовым. Уникальность его состояла в наличии суппорта — революционного устройства, освобождающего руки рабочего. Сегодня на токарных станках обрабатывается до 70% всех металлических деталей. Это один из самых востребованных видов промышленного оборудования. Постепенно обычные станки вытесняются оборудованием с числовым программным управлением, более эффективным и точным.

Устройство токарного станка

Чтобы лучше понять принцип работы оборудования изучим строение его главных механизмов:

  • станина;
  • гитара сменных колес;
  • фартук;
  • коробка подач;
  • суппорт;
  • задняя бабка;
  • коробка с электрооборудованием.

Устройство передней бабки

Передняя бабка металлообрабатывающего станка представляет собой металлическую деталь, обычно из чугуна, в которой располагается переключатель скоростей и главная рабочая часть — шпиндель. На бабке крепится болванка будущей детали. Коробка скоростей принуждает деталь вращаться. Основной компонент передней бабки — это вал в виде металлической трубки — шпиндель. Вал оканчивается резьбой особого размера для крепления патрона (используются поводковые, а также кулачковые типы) либо планшайбы, которая удерживает деталь. Здесь же находится прорезь в виде конуса для установки переднего центра. В шпинделе есть сквозное отверстие, сюда вставляют прут при необходимости его обработки. Для вращения шпинделя в передней бабке установлены подшипники, движение передается заготовке. В обычных станках используются подшипники скольжения, а в скоростных — роликовые или шариковые (качения). Именно от правильного движения шпинделя зависит точность обработки детали на станке.

Подшипники не должны иметь люфта, работать легко и равномерно, удерживать шпиндель крепко и устойчиво. Два подшипника обеспечивают надежное крепление и вращение: задний и передний.

На внешней стороне стойки находится переключатель скоростей и информационная таблица. В таблице разъясняется, в какое положение устанавливать переключатель, чтобы получить требуемую скорость (число оборотов за минуту) вращения шпинделя.

Переключение скоростей производится после полной или частичной остановки инструмента, иначе зубчатые колеса передачи быстро выйдут из строя.



Гитара сменных колес это устройство, контролирующее характер шагового движения при нарезке резьбы. Каждый тип нарезки соответствует определенному набору зубчатых сменных колес. Такой механизм можно обнаружить на токарно-винторезном оборудовании старого образца. Он управляет движением резцедержателя.



Коробка подач — одна из основных частей механизма передачи, которая от шпинделя подает движение на суппорт. На этом участке скорость кручения движущихся элементов меняется, благодаря чему суппорт передвигается с необходимой скоростью в поперечном или продольном направлении.

Фартук — преобразовывает вращение вала хода в движение суппорта в обоих направлениях.



Станина (подставка) — основание машины, обычно выполняется из тяжелого металла (чугуна). Крепится на пару толстых столбов. Верхние части подставки — пара гладких рельс и пара направляющих в виде призмы, по ним перемещаются задняя бабка и суппорт.



Суппорт — это устройство токарного станка по металлу, передвигающее резцедержатель вместе с вставленным инструментом в любом направлении по отношению к оси токарного механизма: продольном, наклонном или поперечном. Наличие суппорта освобождает токаря от необходимости удерживать инструмент в руках. Движение в нужную сторону инструменту можно придать вручную или механически. Части суппорта:

  • устройство поперечных салазок;
  • каретка, двигающаяся по рельсам подставки;
  • фартук с устройством преобразования кручения валов хода и винта в перемещение суппорта;
  • устройство резцовых салазок;
  • устройство резцедержателя.



Задняя бабка нужна чтобы закрепить свободный конец крупной детали из металла во время работы. На нее крепятся и дополнительные инструменты, например, сверла.

Задняя бабка может быть с обычной или крутящейся встроенной серединой. Встроенную крутящуюся середину используют в механизмах для ускоренного резания.

Короб с электрическими частями содержит кнопки, рукоятки и тумблеры для пуска и остановки металлообрабатывающего станка, электромотора, управления устройствами подач и оборотов, надзора над устройством фартука.

Кроме перечисленных частей в механизме токарного станка могут применяться хомуты, цанги, планшайбы, оправки, люнеты. Не в каждом станке присутствуют описанные выше части. Так, в станках для нарезки резьбы на детали нет коробки подач, вместо нее работает гитара и зубчатые колеса. У других устройств узел подач состоит из пары механизмов.

Технические характеристики и принцип работы

Независимо от устройства, станок характеризуется несколькими показателями:

  • максимальная толщина (диаметр) болванки из металла для обработки;
  • максимальное расстояние между серединами бабок;
  • наибольшая толщина заготовки, которая устанавливается над суппортом.

А — передняя бабка, Б — суппорт, В — задняя бабка, Г — станина, Д — основание, Е — фартук, Ж — привод деления и затылования, З — гитара

В крепления на задней бабке устанавливается инструмент, которым будет производиться обработка детали. Бабка перемещается по рельсам станины на расстояние, определяемое длиной обрабатываемой заготовки. Суппорт располагается между передней и задней бабками, во время работы каретка двигается по рельсам и перемещает резак вдоль заготовки. Устройство резцедержателя зависит от металла детали и степени нагрузки на инструмент. Если работа не слишком сложна, достаточно будет одиночного держателя. На токарных станках современных моделей обычно устанавливают головки резцов. Это достаточно устойчивое устройство, способное удержать до четырех инструментов одновременно.

В качестве двигателя используется электрический мотор с ременной передачей. Ремень идет от двигателя к шкиву токарного станка, основное внимание следует уделять его натяжке, обеспечивающей хороший ход. Ремень изготавливается из брезентовой ленты, прорезиненной ткани или другого прочного материала.

Видео о том, как правильно выбрать :

Металлорежущим станком называют технологическую машину, на которой путем снятия стружки с заготовки получают деталь с заданными размерами, формой, расположением и шероховатостью отверстий.

Токарные станки - самый распространенный тип металлообрабатывающего оборудования. Токарное оборудование, предназначенное для обработки металла, бывает разных типов: напольное, настольное - в зависимости от целей использования. Кроме того различают станки с ЧПУ и без него.

Любой металлообрабатывающий токарный станок (включая современные центры по обработке металлов) работает в соответствии с принципом: заготовка, предназначенная для обработки, жестко закрепляется в патроне, закрепленном на шпинделе, вращающимся посредством приводного механизма с заданной частотой.

В зависимости от массы различают станки легкие (до 1 т), средние (до 10 т) и тяжелые (свыше 10т).
Резание металла (снятие металлической стружки с заготовки) осуществляется при помощи высокопрочного резца со сменными пластинками (или с напайкой и заточкой под определенным углом). Закрепленный в резцедержателе резец обрабатывает поверхность заготовки, перемещаясь вдоль и поперек оси вращения этой заготовки. Устройство токарных станков должно обеспечить не только соответствующую мощность механизма привода и механизма продольной подачи, но и статичность резца и заготовки.

Двумя главными параметрами любых токарных станков по металлу являются наибольший диаметр обрабатываемой детали над станиной и наибольшее расстояние между центрами (крайними точками, через которые проходит ось вращения детали). Эти два параметра задают максимальные габариты деталей, с которыми способен работать токарный станок.
Для изготовления на станках требуемой детали рабочим органам станка необходимо сообщить определенный, иногда достаточно сложный комплекс согласованных движений, при которых с заготовки снимается в виде стружки избыточный материал (припуск).
В процессе развития промышленности технологии и методы металлообработки, в том числе токарной, постоянно совершенствуются. На сегодняшний день наиболее актуальными и перспективным является выпуск токарных станков и обрабатывающих центров с числовым-программным управлением (ЧПУ). Данные станки предназначены для обработки деталей по всему спектру операций от черновых до чистовых при обработке наружных и внутренних цилиндрических поверхностей, сверления, зенкерования, развертывания осевых отверстий, точения конусов, нарезки наружной и внутренней резьбы.

Токарные станки с ЧПУ

Отечественные токарные станки с ЧПУ специально разработаны для высокопроизводительной обработки широкой номенклатуры материалов (Токарные станки с ЧПУ). Станки одинаково эффективны при выполнении как черновой, так и чистовой обработки с точностью до 7 квалитета. На станках с ЧПУ рабочие органы перемещаются по программе, и влияние человека сводится к отладке этой программы и привязке режущего инструмента.
На этих токарных станках выполняют широкий спектр технологических задач:
обточку и расточку цилиндрических, конических и фасонных поверхностей;
нарезание метрической, дюймовой, торцевой и конусной резьбы;
подрезку и обработку торцов;
вытачивание канавок;
сверление, зенкерование и развёртывание отверстий.
Высокая точность обработки обеспечивается:
точностью позиционирования поперечного и продольного суппорта с дискретностью 1 мкм;
стабильностью положения режущего инструмента в револьверной головке при автоматической смене;
высокой жесткостью суппортов;
высокой жесткостью шпинделя, выполненного на прецизионных опорах качения, позволяющих совмещать предварительные и финишные операции. Класс точности станков - Н (В и П - специсполнение).
Высокая производительность станка может достигаться за счет:
использования гидравлического патрона и податчика прутка,
возможности предварительной и финишной обработки большого количества поверхностей за один установ с использованием всех позиций револьверной головки (до 12-ти позиций),
компенсации износа инструмента посредством электронной коррекции (например при применении системы HPMA от Renishaw).
Также современные токарные станки с ЧПУ предусматривают возможность многостаночного обслуживания (1 оператор на несколько станков).
Данные станки подразделяют на:
Вертикальные - применяются для обработки заготовок с большой массой и габаритами. Они в свою очередь бывают
Одностоечные.
Двухстоечные.
Горизонтальные.

Строение токарного станка с ЧПУ. Прямая станина

Станина - несущий элемент станка, предназначенный для установки всех элементов оборудования и обеспечения жесткости системы. Чаще всего представляет собой стабилизированную и шлифованную чугунную отливку с оребрением. Относительно нее ориентируются и перемещаются подвижные детали и узлы.
Прямая станина - самый распространенный на данный момент тип токарного станка (например, ). В современных станках для обеспечения высокой жесткости конструкции ширина станины и направляющих увеличены.
Направляющие являются опорными поверхностями, обеспечивающими требуемое взаимное расположение и возможность относительного перемещения узлов, несущих инструмент и заготовку. Направляющие изготавливаются преимущественно из серого чугуна как одно целое со станиной. Накладные направляющие практически не применяются. Обрабатываемая заготовка получает вращение от шпинделя станка, а режущий инструмент закрепляется в резцедержке на суппорте и осуществляет формообразующие движения по двум координатным направлениям X и Z. Ось Z совпадает с направлением оси шпинделя, а ось X перпендикулярна ей. По оси Z чаще всего применяют V-образные, по оси Х - ласточкин хвост.
Направляющие на станках с наклонной станиной - прямоугольные скольжения или роликовые качения.
Шпиндельная бабка
Обеспечивает передачу момента от электродвигателя к шпинделю. Чаще всего в корпусе шпиндельной бабки размещена зубчатая коробка скоростей. Она может иметь несколько диапазонов скоростей для обеспечения оптимальных режимов обработки различных материалов. Изменение скорости вращения шпинделя может быть ступенчатым или бесступенчатым внутри диапазона:
Ступенчатое вращение осуществляется через зубчатую коробку скоростей от асинхронного мотора (чаще двухскоростного)+ручное переключение диапазонов+муфты. Реализует ограниченное количество скоростей вращения шпинделя. Обычно 12 неизменяемых позиций.
Бесступенчатое вращение (в том числе внутри диапазона) осуществляется асинхронным двигателем и частотным преобразователем или сервоприводом шпинделя; дискретность изменения - 1 об/мин ( , ). Бесступенчатые приводы обеспечивают возможность плавной настройки режимов обработки без останова станка с высокой точностью. Применение бесступенчатого привода позволяет повысить производительность путем выбора наиболее целесообразного режима обработки и сохранить постоянную скорость резания при поперечном точении (при увеличении или уменьшении диаметра обрабатываемой заготовки). Управление гидроприводом или с механическими вариаторами практически не применяется. Возможность переключения 2-3 диапазонов позволяет получать различные диапазоны скорости вращения и вращающего момента.
Широкий диапазон регулирования частоты вращения шпинделя обеспечивается за счет применения в качестве главного привода - электродвигателя переменного тока с частотным преобразователем.
Переключение диапазонов скоростей может быть ручным или автоматическим. Способ переключения диапазонов (передач) в основном определяется назначением станка, частотой переключений и длительностью рабочих перемещений. Для станков с бесступенчатым регулированием величина скорости внутри диапазона является вторичным условием выбора станка, т.к. переключения достаточно редки.

Шпиндель - обычно полый цилиндр - обеспечивает возможность фиксации по средствам оснастки и обработки прутковых заготовок.
Для обеспечения необходимой точности обработки в течение заданного срока службы шпиндели должны обладать жесткостью, стабильностью положения оси при вращении, износостойкостью опорных, посадочных и базирующих поверхностей, виброустойчивостью. Для соответствия указанным требованиям шпиндели, как правило, изготавливаются из стали и подвергаются термической обработке (цементации, азотированию, объемной и поверхностной закалке, отпуску).
На шпинделе или на промежуточном валу, вращающемся с той же скоростью, устанавливается датчик скорости вращения шпинделя. Это позволяет получать данные о реальной скорости вращения шпинделя, осуществлять синхронизацию осей для нарезания резьбы.
Примечание:
Для станков с высокой и повышенной степени точности рекомендовано применять шестеренчатую зубчатую коробку с раздельным приводом. Коробка скоростей соединяется со шпинделем ременной передачей и лишена недостатков встроенной зубчатой коробки. Нагрев во время работы, вибрации от зацепления зубьев оказывают меньшее воздействие на шпиндель. Этих недостатков также лишены станки с наклонной станиной.
Резцедержка
Может иметь 4, 6, 8 или 12 позиций в зависимости от максимального диаметра обработки. Большее количество инструментов необходимо при изготовлении сложных деталей, точении труднообрабатываемых материалов, когда инструменты имеют малый период стойкости или при частой переналадке для обработки разнотипных деталей и т. п.
Электрооборудование
В процессе эволюции электрооборудование станка занимает все меньшую площадь и обеспечивает большие возможности автоматизации. Плавное изменение оборотов вращения шпинделя, поддержание постоянства скорости резания, увеличение количества одновременно интерполируемых осей и точности позиционирования, возможность подключения дополнительного оборудования.
Электромагнитные или механические муфты в коробках станков применяются все реже.
В станках с ЧПУ при любом конструктивном решении привода подач для перемещения рабочего органа по каждой из координат предусмотрен самостоятельный привод. В основном применяются сервоприводы с точным датчиком обратной связи по положению. Шаговые привода используются на хоббийных станках. Электро-гидравлические приводы, приводы с электромагнитными муфтами, гидрокопиры и приводы постоянного тока в новых станках практически не применяются.
Система СОЖ и смазки
Система смазывания предназначена для подачи, дозирования и распределения смазочного материала, а также контроля и управления смазыванием. От эффективности действия системы смазывания зависят такие важнейшие показатели качества работы станков, как точность, долговечность, экономичность, бесшумность.
Система смазки шпиндельной бабки, централизованная смазка направляющих и ШВП, система подачи СОЖ в зону резания увеличивают срок эксплуатации станка и помогают обеспечить режимы резания, обеспечить отвод тепла и чистоту поверхности.
Смазка подшипников и шестерен шпиндельной бабки на современных станках осуществляется принудительным поливом.
Оснастка
Для закрепления заготовок на токарном станке применяют: патроны, планшайбы, цанги, центры, хомутики, люнеты, оправки. Оснастка на станках с ЧПУ может применяться и с универсальных станков, но за счет более высокой точности и больших скоростей вращения рекомендуется подбирать специализированные оправки. Более подробно об этом можно прочитать здесь: Оправки для токарных станков, Токарные патроны для станков. Для контроля точности обработки деталей токарь может использовать штангенциркули, микрометры, калибры, шаблоны, угломеры и другие измерительные инструменты, но системы контроля процессов обработки, такие как HPPA от Renishaw, позволят максимально автоматизировать производственный процесс и существенно снизить трудозатраты.
Оси подач
Сервоприводы по заданию ЧПУ осуществляют перемещение осей и контроль позиции. Сервомотор, вращаясь через муфту, передает вращение на ШВП. ШВП перемещает механические узлы выбранной координаты.
Винтовые пары качения имеют низкие потери на трение, достаточно высокую жесткость и технологическую надежность. Устранение зазоров в резьбовом шариковом соединении между рабочими поверхностями резьбы винта и гайки и шариками и создание предварительного натяга производится за счет взаимного сближения полугаек, их осевого перемещения или взаимного поворота. Высокая работоспособность и точность передачи винт-гайка качения обеспечивается высокой твердостью рабочих поверхностей.
Защита зоны резания
Кабинетная защита и раздвижные двери уменьшают разлет стружки и СОЖ при интенсивных режимах обработки, а также защищает оператора от возможного вылета детали.

Резцы
Различают следующие типы токарных резцов:
проходные - для обтачивания наружных цилиндрических и конических поверхностей;
расточные (проходные и упорные) - для растачивания глухих и сквозных отверстий (с расточными станками в продаже от компании СтанкоМашКомплекс можно ознакомится по ссылке);
отрезные/канавочные - для отрезания заготовок и обработки канавок;
резьбовые - для нарезания наружных и внутренних резьб;
фасонные - для обработки фасонных поверхностей;
прорезные - для протачивания кольцевых канавок;
галтельные - для обтачивания переходных поверхностей между ступенями валов по радиусу.
Виды токарных резцов по характеру обработки:
черновые,
получистовые,
чистовые.
По направлению обработки:
левые,
правые.
По конструкции:
цельные,
с приваренной пластиной,
со сменными пластинами.

Люнеты
Люнеты бывают подвижные, неподвижные, открытые и служат для поддержки длинных деталей в процессе обработки.

Строение токарного станка с ЧПУ. Наклонная станина

Станки с наклонной станиной () предназначены для обработки деталей по всему спектру операций и представляют собой жесткую конструкцию для высокоскоростной и высокоточной токарной обработки широкой номенклатуры деталей.

Отличия от прямой станины
высокие обороты шпинделя (до 5000 об/мин), возможность «жесткого точения»;
большая степень автоматизации (гидравдический патрон, пиноль задней бабки, податчик прутка);
большое количество позиций резцедержки (8, 10, 12);
закрытые направляющие зоны резания, высокая скорость подачи по осям;
отвод стружки под действием силы тяжести, подачи СОЖ, подачи СОЖ под давлением, имеется стружкосборник.
Задняя бабка
Имеет отдельные направляющие для перемещения вдоль оси шпинделя.
Защита направляющих
Предохраняет рабочие поверхности от попадания на них пыли, стружки, грязи и уменьшает смывание масляной пленки. Обычно представляет собой телескопическую конструкцию, рассчитанную в сложенном и полностью раскрытом состоянии на максимальные перемещения по осям. Шпиндельная бабка
Не имеет зубчатой коробки скоростей, шпиндель вращается бесступенчато на всем диапазоне работы станка. Вращение может обеспечиваться через поликлиновой ремень от серводвигателя шпинделя или напрямую от моторшпинделя. Для обеспечения повышения момента используют ведущий и ведомый шкивы разного диаметра. Опционально применяют отдельную двухдиапазонную Z коробку с редукцией 1:1 и 1:4 (1:6), устанавливаемую на вал двигателя шпинделя.

Токарные обрабатывающие центры

Обрабатывающий центр () совмещает функции токарного и фрезерного станков и предназначены для комплексной обработки деталей типа тел вращения с высокой долей автоматизации. Высокая точность обработки обеспечивается конструкцией станка (высокоточные подшипники, линейные направляющие качения, активные измерительные системы контроля инструмента, жесткость и виброустойчивость базовых корпусных деталей и др.). Подобные станки предназначены прежде всего для производства сложных деталей, требующих как операции точения, так и фрезерования.
Особенности :
позиционирование шпинделя на заданный угол,
одновременная интерполяция 3х и более осей,
приводной инструмент,
противошпиндель,
ось Y,
дополнительная резцедержка и прочие средства автоматизации.
Задняя бабка может перемещаться вручную, зацеплением за суппорт Z или иметь отдельный привод. Пиноль может заменяться на противошпинделе.

Точность станков и качество обработки

Качество обработки на станке непосредственно связано с его точностью, которая характеризует степень влияния различных погрешностей станка (геометрических, кинематических, упругих, температурных и динамических) на точность изготовляемых деталей.
Геометрические погрешности зависят от точности изготовления деталей, сборки и установки станка, а также износа узлов в процессе эксплуатации. Они влияют на точность взаимного расположения режущего инструмента и заготовки в процессе формообразования.
Кинематические погрешности определяются ошибками в передаточных числах различных передач кинематической цепи, возникающими вследствие погрешностей отдельных элементов станка (зубчатых колес, червяков, винтовых пар и др.).
Упругие погрешности связаны с деформациями станка, которые вызывают изменение взаимного расположения инструмента и заготовки под действием сил резания и характеризуются жесткостью станка (станины), т.е. его способностью сопротивляться образованию деформации.
Температурные погрешности возникают главным образом вследствие неравномерного нагрева/охлаждения различных элементов станка в процессе его работы (что приводит к изменению начальной геометрической точности) и оказывают существенное влияние на качество обработки деталей, особенно высокоточных.
Динамические погрешности связаны с относительными колебаниями инструмента и заготовки. Они ухудшают качество обработки, могут снижать стойкость режущего инструмента и долговечность станка.
Кроме указанных погрешностей станка на качество обработки значительное влияние оказывают погрешности режущего инструмента, возникающие при его изготовлении и установке на станке, а также износ режущей части в процессе эксплуатации.

Токарно-винторезные станки — многофункциональное металлообрабатывающее оборудование, способное выполнять целый спектр технологических операций, среди которых обточка, расточка, обработка торцов, зенкерование, развертывание и подрезка.

В данной статье рассмотрено устройство, функциональное назначение, принцип работы и возможности станков токарной группы. Мы изучим рынок на предмет наиболее распространенных моделей и ознакомимся с их техническими характеристиками.

1 Назначение, особенности конструкции

Универсальный токарно-винторезный станок предназначен для обработки деталей из черных и цветных металлов. Помимо вышеуказанных операций на таких агрегатах можно выполнять нарезание резьбы (модульной, питчевой, метрической и дюймовой), а также точение конусообразных конструкций. Комплектация станков вспомогательными устройствами позволяет значительно расширить их функциональность, добавив возможность выполнения шлифовки, радиального сверления, фрезерования.

Данное оборудование имеет сравнительно большие размеры и вес, поэтому в частных мастерских оно встречается достаточно редко (за исключением станций СТО, где станки используются для обточки автомобильных деталей). Основными сферами эксплуатации таких механизмов является мелкосерийное и единичное производство, однако токарно-винторезный станок с ЧПУ нередко используется в условиях массового производства.

Универсальный токарно-винторезный станок состоит из следующих основных узлов:

  • станина;
  • передняя и задняя бабка;
  • шпиндель;
  • суппорт;
  • коробка подач.

Рассмотрим устройство токарно-винторезного станка более детально.

1.1 Станина

Станина является одним из базовых узлов, по которому перемещаются суппорт и задняя бабка, также станина выступает в качестве несущей опоры под обе бабки (заднюю и переднюю). Сама станина состоит из двух стальных балок, соединенных поперечными ребрами жесткости. На каждой из балок имеется по две направляющие, на правой обе направляющие призматические, на левой — внутренняя направляющая плоская.

Передняя бабка фиксируется на левом конце станины, на правом — задняя, положение которой можно регулировать перемещая ее вдоль станины. По наружным направляющим конструкции перемещается каретка. Параллельность направляющих непосредственно влияет на точность обработки деталей.

1.2 Передняя и задняя бабка

Назначение передней бабки — фиксация обрабатываемой заготовки и передача на нее вращения от электродвигателя. Вращение заготовке сообщает шпиндель, расположенный внутри корпуса бабки. Снаружи ее корпуса смонтированы рукоятки для управления коробкой скоростей, позволяющие регулировать частоту оборотов шпинделя.

Задняя бабка поддерживает правую сторону детали. При использовании вспомогательного инструмента, в нее устанавливаются сверла, метчики, развертки и т.д. В зависимости от конструктивных особенностей бабки классифицируются на два вида — с обычным и вращающимся центром. Последним вариантом комплектуются современные станки для скоростного нарезания, тогда как агрегаты для тяжелых работ оснащаются стандартными бабками.

Корпус бабок обеих типов располагается на опорной плите, смонтированной на станине. В переднем конце бабки находится пиноль с посадочным гнездом для установки центра либо рабочего инструмента. Корпус бабки можно регулировать в поперечной плоскости, что позволяет обрабатывать пологие конуса.

1.3 Шпиндель

Наиболее важным рабочим узлом любого токарно-винторезного оборудование является шпиндель. Это полый стальной вал, на торце которого расположено коническое отверстие, которое монтируется передний центр станка. Полость шпинделя необходима для возможности установки прутка, посредством которого из посадочного гнезда выбивается центр.

Шпиндель в стандартных станках смонтирован на подшипники скольжения, однако в высокоскоростном оборудовании применяются более жесткие подшипники качения. Крайне важным условием правильной работы станка является отсутствие люфта при вращении шпинделя, поскольку при его наличии колебания будут передаваться на деталь, что снизить точность ее обработки. Именно от качества и надежности используемых подшипников зависит эксплуатационная выносливость данного узла.

1.4 Коробка подач

Коробка подач, сообщающая вращение от шпинделя к суппорту, имеет следующие основные узлы:

  • гитара;
  • ходовой винт;
  • ходовой вал;
  • трензель;
  • гитара.

Назначение трензеля — регулировка направления подачи, гитары — получение требуемой частоты хода. В фартуке располагаются механизмы, которые преобразуют вращение ходового вала в поступательное перемещение рабочего инструмента. Некоторые токарно-винторезные станки вместо полноценной коробки подач могут иметь упрощенный реверсный механизм, позволяющий изменять только направление движения ходового вала.

1.5 Суппорт

Назначение суппорта — изменение положения резцедержателя, фиксирующего рабочий инструмент, в поперечной, продольной и наклонной плоскостях. Суппорт является одним из наиболее габаритных узлов станка, он состоит из нижней плиты, на которой установлены продольные салазки (каретка). Сверху салазок смонтированы поперечные направляющие, на них располагается поворотная часть суппорта.

Универсальный токарно-винторезный станок в процессе эксплуатации теряет точность регулировки суппорта, причиной этого является появления зазора на боковых поверхностях направляющих суппорта. Уменьшить данный зазор позволяет нехитрый ремонт — необходимо лишь подтянуть специальную клиновую планку.

Тип устанавливаемого на суппорт резцедержателя непосредственно зависит от класса токарного станка. В легком оборудовании используются одноместные конструкции в виде цилиндрического корпуса с внутренней полостью, стягивающейся с помощью винта. На крупногабаритном оборудовании промышленного класса используются резцедержатели четырехгранного типа с поворотными головками, обеспечивающие максимальную прочность фиксации резца.

1.6 Обзор конструкции токарно-винторезных станков (видео)


2 Распространенные модели Станков

Любой универсальный токарно-винторезный станок по металлу имеет два ключевых параметра, определяющих его функциональные возможности. Это высота центров (расстояние от оси вращения шпинделя до верхнего контура станины), от которого зависит максимальный диаметр обрабатываемых деталей, и расстояние между центрами, влияющее на наибольшую длину обработки.

Наиболее распространенным оборудованием отечественного производства является токарно-винторезный станок 16К40, имеющий класс точности обработки «Н», в соответствии с положениями ГОСТ №8-82Е. Данный агрегат выполняет такие операции как растачивание, точение, сверление и нарезание резьбы.

16К40 относится к оборудованию среднетяжелого типа, его вес составляет 7.1 тонну, а размеры — 578*185*162 см. Рассмотрим технические характеристики данной модели:

  • наибольший диаметр обработки — 800 мм;
  • длина деталей — 3000 мм;
  • вес деталей — до 4 тонн;
  • частота вращения шпинделя — 6-1250 об/мин;
  • мощность основного электродвигателя — 18500 Вт.

Устройство токарных станков


К атегория:

Токарное дело

Устройство токарных станков

Основные сведения о кинематике токарных станков. Кинематическая связь в токарных станках осуществляется посредством передач, с помощью которых вращательное движение с одного вала (рис. 49) передается другому II или вращательное движение преобразуется в поступательное. Наиболее простая передача - ременная, которая может быть плоскоременной (рис. 49, а) или клиноременной (рис. 49, б), кроме того, передача может быть зубчатой (рис. 49, в) и цепной (рис. 49,г). В коробках скоростей в основном применяют зубчатые передачи: цилиндрические (рис. 50, а), конические (рис. 50,6), червячные (рис. 50, в), винтовые (рис. 50, г), реечные (рис. 50) и шарикороли-ковые (рис. 50, е) в направляющих узлах. Применение передач в токарном станке показано на рис. 51.

Рис. 50. Виды передач в коробках сноростей

Рис. 51. Передачи, используемые в тонарном станне

Рис. 52. Различные виды передач

Рис. 53. Кинематичесная пара

Кинематическая пара - соединение двух соприкасающихся звеньев, допускающее их относительное движение, например передача движения с вала / на вал II (рис. 53, а) или преобразование одного движения А в другое Б (рис. 53, б).

Рис. 54. Изменение направления вращения в узлах токарного станна

Рис. 55. Кинематичесная цепь

Рис. 56. Кинематичесная цепь с четным (а) и нечетным (б) числом зацеплений

Рис. 57. Кинематичесная цепь норобки сноростей тонарно-винторезного станка

Рис. 58. Основные узлы тонарно-винторезного станка

Рис. 59. Передняя бабна

Рис. 60. Шпиндельный узел с опорами

Пример кинематической цепи указан на рис. 55. Знак передаточного отношения кинематической цепи положителен, если направление вращения конечного и начального звеньев цепи одинаковое, и отрицателен, если направления их вращения различны.

Положительный знак передаточного отношения кинематической цепи обеспечивается, если кинематическая цепь состоит из четного числа зацеплений (рис. 56, а), и отрицательный, если число зацеплении нечетное (рис. 56,6).

Кинематической цепью станка называют совокупность соединенных между собой кинематических пар, передающих движение от источника движения до конечного звена - рабочего органа станка шпинделя (рис. 57).

Основные узлы станка. Основными узлами токарно-винторезного станка являются: станина (рис. 58), передняя бабка (коробка скоростей), задняя бабка, коробка подач, фартук и суппорт.

Рис. 61. Способы крепления тонарного патрона в шпинделе

Рис. 62. Задняя бабка

Рис. 63. Суппорт

Рис. 64. Фартун и его узлы

Рис. 66. Поперечные (а) и верхние (б) салазни

Рис. 67. Лимбы

Рис. 68. Резцедержатели

Передняя бабка (рис. 59) состоит из шпиндельного узла с опорами (рис. 60) и служит для передачи вращения заготовки, закрепленной в патроне посредством конусного (рис. 61, а) или резьбового (рис. 61, б) соединения на фланце патрона.

Задняя бабка служит для центрирования второго конца заготовки или инструмента и состоит из основания (рис. 62), корпуса, пиноли, маховичка, рукоятки крепления задней бабки к станине и рукоятки зажима пиноли. В переднем конце пиноли имеется конусное гнездо, в которое вставляется центр или режущий инструмент (сверло, зенкер, развертка и др.).

Суппорт предназначен для крепления и перемещения резца в процессе резания (рис. 63). Резец закрепляют в резцедержателе, установленном на верхних салазках. Суппорт может перемещаться вручную посредством шестерни (рис. 64) и рейки, а также механически посредством ходового вала. Механическое перемещение суппорта при нарезании резьб осуществляется с помощью ходового винта и разъемной (маточной) гайки (рис. 65).

Поперечные салазки служат для перемещения резца к заготовке (рис. 66, а). На них устанавливают верхние салазки (рис. 66, б). Подача резца как в поперечном, так и в продольном направлении производится маховиками с лимбами для установки на требуемый размер обработки (рис. 67).

Рис. 69. Коробка подач

Рис. 70. Передача движения от шпинделя н ходовому

Рис. 71. Привод токарного станка винту (а) при правом (б) и левом (в) вращении ходового винта

Рис. 72. Органы управления тонарно-винторезного станна 16К20

Резцедержатели предназначены для крепления резцов на станке. В одноместном резцедержателе (рис. 68, а) резец закрепляют одним винтом. Более надежное крепление резца обеспечивает резцедержатель (рис. 68, б), в котором резец закрепляют двумя винтами. На универсальных станках применяют четырехместные резцедержатели (рис. 68, в), позволяющие одновременно устанавливать четыре резца.

Коробка подач, обеспечивая движение ходового вала или винта (рис. 69), позволяет изменять их частоту вращения (рис. 70) переключением блоков зубчатых колес с помощью рычагов и рукояток.

Привод токарного станка состоит из электродвигателя (рис. 71) и механизма передачи движения. Расположение и назначение органов управления токарно-винторезного станка 16К20 показаны на рис. 72: 1 - рукоятка управления фрикционной муфтой главного привода; 2 - вариатор подачи шага резьбы и отключение механизма подачи; 3-вариатор подачи и типа нарезаемой резьбы; 4 - вариатор подачи шага резьбы; 5 - переключатель на левую или правую резьбу; 6 - рукоятка установки нормального или увеличенного шага резьбы и положения при делении резьбы на заходы (мно-гозаходной); 7 и 8 - рукоятки установки частоты вращения шпинделя;

Рис. 73. Трехкулачновый самоцентрирующий патрон с обратными (а) и прямыми (б) нулачками

Рис. 74. Спиральный трехкулачновый самоцентрирующий патрон: 1-ведущая шестерня; 2-диск; 3-кулачки токарного зажимного патрона; 4-зубчатый обод

Рис. 75. Патроны с эксцентриковым (а), винтовым (б) и реечным (в) приводом

Приспособления и вспомогательный инструмент токарных станков предназначены для установки и крепления заготовок и инструмента. Наиболее широко применяют токарные патроны, центры, оправки, люнеты, планшайбы, переходные втулки и хомутики.

Токарные патроны предназначены для крепления в них заготовок или инструмента. Самоцентрирующие трехкулачковые патроны (рис. 73) предназначены для установки и крепления симметричных заготовок. Они наиболее удобны в работе, не требуют много времени на установку и крепление заготовки. Для перемещения кулачков в патроне служат диски со спиральной канавкой (рис. 74). Патрон с эксцентриковым зажимом кулачков показан на рис. 75,а. Для перемещения служат также винтовой (рис. 75, б) и реечный (рис. 75, в) приводы. В последнем при вращении винта рейка перемещает колесо, посредством которого перемещаются другие рейки с кулачками. На рис. 76 показан двухкулачковый патрон с винтовым приводом (рис. 76, а) и самозажимной патрон с рифельными кулачками (рис. 76, б), а на рис. 77 - пневматический патрон.

Рис. 76. Двухкулачковый патрон с винтовым приводом (а) и самозажимной патрон с рифельными нулачками (б): 1-корпус; 2-рифельные кулачки; 3-упор; 4-крышка

Рис. 77. Пневматический патрон: 1-шток; 2-штанга; 3,4-ползун с конической втулкой; 5-двухплечий рычаг; 6,7-вспомогательные и основные зажимные кулачки

Рис. 78. Четырехнулачновый несамоцентрирующий патрон (а) и планшайба (б): 1 - Т-образные направляющие пазы; 2 - сквозные пазы

Рис. 79. Цанговый патрон: а - для обработки с малой точностью; б - для обработки с повышенной точностью

Рис. 80. Роликовый самозажимной патрон

Для крепления несимметричных заготовок применяют четырехкулач-ковые несамоцентрирующие патроны (рис. 78, а). В этом патроне зажимные кулачки перемещаются независимо друг от друга. Для крепления несимметричных заготовок используют также планшайбы (рис. 78,6).

Рис. 81. Поводковый патрон с отогнутым хомутиком (а) и с предохранительным кожухом (б)

Рис. 82. Сверлильный самоцентрирующий патрон

Рис. 83. Токарные центры: L-длина центра; I -длина посадочного места

Для крепления заготовок небольших диаметров применяют цанговые и роликовые самозажимные патроны. Цанговый патрон (рис. 79) состоит из цанги и корпуса. Каждая цанга имеет определенный диаметр отверстия. При переходе на обработку заготовки другого диаметра цангу меняют. В роликовом самозажимном патроне (рис. 80) заготовки крепят тремя роликами, которые, перекатываясь по поверхностям А, В, С, заклиниваются между этими поверхностями и заготовкой.

При обработке заготовок в центрах применяют поводковые патроны (рис. 81). Для крепления сверл и другого концевого инструмента применяют сверлильные самоцентрирующие патроны (рис. 82).

Центры. Токарные центры (рис. 83) исспользуют для крепления заготовок на станке. Центр имеет рабочую часть (рис. 84), на которой крепят заготовку, и хвостовик 2 в виде конуса, которым центр вставляют в пиноль. Цилиндрическую часть хвостовика устанавливают в гнездо пиноли. Прямые конуса (рис. 84, а) применяют для установки заготовок обычными (внутренними) центрами. Для заготовок с наружными центрами применяют обратные центры (рис. 84, б), которые используют для тонких заготовок. При обработке торца заготовки при работе в центрах применяют полуцентры (рис. 84, в). При обработке конических поверхностей с большим уклоном целесообразно применять центры со сферической поверхностью (рис. 84, г). Заготовки, имеющие большие центровые отверстия или детали типа втулок, закрепляют с помощью рифельных центров (рис. 84,d). При таком способе крепления можно обтачивать заготовку по всей длине за одну установку. При обработке точных заготовок на больших скоростях применяют прямые центры с острием, оснащенным твердым сплавом (рис. 84, е). При черновых работах, при работе в центрах применяют вращающиеся центры (рис. 84, ж). Вращающийся центр устанавливают в пиноли задней бабки. При обработке заготовок больших диаметров, когда необходимо обильное смазывание трущихся поверхностей центров, применяют центры с принудительным поступлением смазочного материала (рис. 84, з). В массовом производстве при обработке однотипных заготовок на полуавтоматах применяют плавающие центры (рис. 84, и). Их устанавливают в пиноли передней бабки.

Рис. 84. Типытонарных центров

Оправки. Для крепления при обработке деталей типа втулок и получения соосности между внутренней и наружной поверхностями применяют различные виды оправок. При выполнении легких работ, когда срезают небольшие слои металла, применяют конические оправки (рис. 85, а). Поверхность оправки выполнена с небольшой конусностью, что позволяет закрепить заготовку на оправке. Такая оправка может быть применена только для одного базового отверстия. При тяжелых условиях работы применяют оправку, показанную на рис. 85, б. Заготовку устанавливают на цилиндрическую поверхность оправки и зажимают гайкой через быстросменную шайбу. Недостатком таких оправок является пониженная точность обработки, так как между цилиндрически соприкасающимися поверхностями заготовки и оправки имеются зазоры. Для устранения этого недостатка применяют оправки, показанные на рис. 85, в, г, д. На коническую поверхность оправки устанавливают прижимную цангу с цилиндрической наружной поверхностью, что позволяет обрабатывать заготовки с точностью 6-7-го квалитетов. Применяют также оправку с упругим посадочным корпусом (рис. 85, е).

Рис. 85. Оправки

Рис. 86. Схема быстродействующих зажимных оправок

Рис. 87. Люнеты

Рис. 88. Переходные конуса и втулки

Рис. 89. Специальные втулки-оправни

Широко применяют быстродействующие зажимные оправки с роликовыми (рис. 86, а, б, в) и кулачковыми (рис. 86, г) зажимами. Заготовка в таких оправках зажимается за счет перемещения роликов или кулачков относительно зажимного профиля.

Люнеты. Длинные и тонкие заготовки, длина которых в 10-15 раз больше диаметра, при обработке прогибаются. В результате получается деталь неправильной формы. Во избежание прогиба заготовки применяют неподвижные (рис. 87, а, б, г) и подвижные (рис. 87, в) люнеты. Неподвижные люнеты закрепляют на направляющих станины токарного станка. Заготовку обрабатывают с двух сторон с переустановом. Подвижные люнеты закрепляют на каретке суппорта и перемещают вместе с кареткой. В отличие от неподвижного люнета, имеющего три опоры (кулачка), у подвижного люнета только два кулачка, на которые опирается заготовка во время обработки.

Переходные втулки. Для крепления на станке инструмента применяют переходные втулки и конусы (рис. 88). Переходные втулки применяют для крепления сверл и другого конического инструмента в пиноли задней бабки тогда, когда размеры конуса инструмента не соответствуют размеру внутреннего конуса пиноли задней бабки. Иногда применяют специальные втулки-оправки, которые закрепляют в резцедержателе (рис. 89).

Рис. 90. Хомутини

Рис. 91. Поводковая оправка

Рис. 92. Физико-механические свойства материалов, применяемых при изготовлении режущего инструмента

Хомутики (рис. 90) предназначены для передачи вращения заготовке при ее обработке в центрах. Самыми распространенными являются хомутики, показанные на рис. 90, а, б. Хомутики надевают на заготовку и закрепляют. Вращение передается через поводок хомутика. При обработке однотипных заготовок применяют самозахватывающие хомутики (рис. 90, в, г). В этом случае захват заготовки производится без участия рабочего. Часто применяют безопасный хомутик с поводком (рис. 90, д). На рис. 91 показана поводковая оправка, которую применяют также как хомутики для передачи вращения заготовке.




mob_info