Сетчатые ректификационные колонны. Типы ректификационных колонн. Выбор оптимальной конструкции контактных устройств

Цель статьи – разобрать теоретические и некоторые практические аспекты работы домашней ректификационной колонны, нацеленной на получение этилового спирта, а также развеять самые распространенные в Интернете мифы и разъяснить моменты, о которых «умалчивают» продавцы оборудования.

Ректификация спирта – разделение многокомпонентной спиртосодержащей смеси на чистые фракции (этиловый и метиловый спирты, воду, сивушные масла, альдегиды и другие), имеющие разную температуру кипения, путем многократного испарения жидкости и конденсации пара на контактных устройствах (тарелках или насадках) в специальных противоточных башенных аппаратах.

С физической точки зрения ректификация возможна, поскольку изначально концентрация отдельных компонентов смеси в паровой и жидкой фазах отличается, но система стремится к равновесию – одинаковому давлению, температуре и концентрации всех веществ в каждой фазе. При контакте с жидкостью пар обогащается легколетучими (низкокипящими) компонентами, в свою очередь, жидкость – труднолетучими (высококипящими). Одновременно с обогащением происходит обмен теплом.

Принципиальная схема

Момент контакта (взаимодействия потоков) пара и жидкости называется процессом тепломассообмена.

Благодаря разной направленности движений (пар поднимается вверх, а жидкость стекает вниз), после достижения системой равновесия в верхней части ректификационной колонны можно по отдельности отобрать практически чистые компоненты, входившие в состав смеси. Сначала выходят вещества с более низкой температурой кипения (альдегиды, эфиры и спирты), потом – с высокой (сивушные масла).

Состояние равновесия. Появляется на самой границе разделения фаз. Достигается только при одновременном соблюдении двух условий:

  1. Равное давление каждого отдельно взятого компонента смеси.
  2. Температура и концентрация веществ в обеих фазах (паровой и жидкой) одинакова.

Чем чаще система приходит в равновесие, тем эффективнее тепломасообмен и разделение смеси на отдельные составляющие.

Разница между дистилляцией и ректификацией

Как видно на графике, из 10% спиртового раствора (браги) можно получить самогон 40%, а при второй перегонке этой смеси выйдет 60-градусный дистиллят, при третьей – 70%. Возможны следующие интервалы: 10-40; 40-60; 60-70; 70-75 и так далее до максимума – 96%.

Теоретически, чтобы получить чистый спирт, требуется 9-10 последовательных дистилляций на самогонном аппарате. На практике перегонять спиртосодержащие жидкости концентрацией выше 20-30% взрывоопасно, к тому же из-за больших затрат энергии и времени экономически невыгодно.

С этой точки зрения, ректификация спирта – это минимум 9-10 одновременных, ступенчатых дистилляций, которые происходят на разных контактных элементах колонны (насадках или тарелках) по всей высоте.

Отличие Дистилляция Ректификация
Органолептика напитка Сохраняет аромат и вкус исходного сырья. Получается чистый спирт без запаха и вкуса (проблема имеет решение).
Крепость на выходе Зависит от количества перегонок и конструкции аппарата (обычно 40-65%). До 96%.
Степень разделения на фракции Низкая, вещества даже с разной температурой кипения перемешиваются, исправить это невозможно. Высокая, можно выделить чистые вещества (только с разной температурой кипения).
Способность убрать вредные вещества Низкая или средняя. Для повышения качества требуется минимум две перегонки с разделением на фракции хотя бы при одной из них. Высокая, при правильном подходе отсекаются все вредные вещества.
Потери спирта Высокие. Даже при правильном подходе можно извлечь до 80% от всего количества, сохранив приемлемое качество. Низкие. Теоретически, реально извлечь весь этиловый спирт без потери качества. На практике минимум 1-3% потерь.
Сложность технологии для реализации в домашних условиях Низкая и средняя. Подходит даже самый примитивный аппарат со змеевиком. Возможны улучшения оборудования. Технология перегонки проста и понятна. Самогонный аппарат обычно не занимает много места в рабочем состоянии. Высокая. Требуется специальное оборудование, изготовить которое без знаний и опыта невозможно. Процесс сложнее для понимания, нужна предварительная хотя бы теоретическая подготовка. Колонна занимает больше места (особенно по высоте).
Опасность (в сравнении друг с другом), оба процесса пожаро- и взрывоопасны. Благодаря простоте самогонного аппарата дистилляция несколько безопаснее (субъективное мнение автора статьи). Из-за сложного оборудования, при работе с которым существует риск допустить больше ошибок, ректификация опаснее.

Работа ректификационной колонны

Ректификационная колонна – устройство, предназначенное для разделения многокомпонентной жидкой смеси на отдельные фракции по температуре кипения. Представляет собой цилиндр постоянного или переменного сечения, внутри которого находятся контактные элементы – тарелки или насадки.

Также почти каждая колонна имеет вспомогательные узлы для подвода исходной смеси (спирта-сырца), контроля процесса ректификации (термометры, автоматика) и отбора дистиллята – модуль, в котором конденсируется, а затем принимается наружу извлеченный из системы пар определенного вещества.

Одна из самых распространенных домашних конструкции

Спирт-сырец – продукт перегонки браги методом классической дистилляции, который можно «заливать» в ректификационную колонну. Фактически это самогон крепостью 35-45 градусов.

Флегма – сконденсировавшийся в дефлегматоре пар, стекающий по стенкам колонны вниз.

Флегмовое число – отношение количества флегмы к массе отбираемого дистиллята. В спиртовой ректификационной колонне находятся три потока: пар, флегма и дистиллят (конечная цель). В начале процесса дистиллят не отбирают, чтобы в колонне появилась достаточно флегмы для тепломассообмена. Потом часть паров спирта конденсируют и отбирают из колонны, а оставшиеся спиртовые пары и дальше создают поток флегмы, обеспечивая нормальную работу.

Для работы большинства установок флегмовое число должно быть не меньше 3, то есть 25% дистиллята отбирают, остальной – нужен в колонне для орошения контактных элементов. Общее правило: чем медленнее отбирать спирт, тем выше качество.

Контактные устройства ректификационной колонны (тарелки и насадки)

Отвечают за многократное и одновременное разделение смеси на жидкость и пар с последующей конденсацией пара в жидкость – достижение в колонне состояния равновесия. При прочих равных условиях, чем больше в конструкции контактных устройств, тем эффективнее ректификация в плане очистки спирта, поскольку увеличивается поверхность взаимодействия фаз, что интенсифицирует весь тепломасообмен.

Теоретическая тарелка – один цикл выхода из равновесного состояния с повторным его достижением. Для получения качественного спирта требуется минимум 25-30 теоретических тарелок.

Физическая тарелка – реально работающее устройство. Пар проходит сквозь слой жидкости в тарелке в виде множества пузырьков, создающих обширную поверхность контакта. В классической конструкции физическая тарелка обеспечивает примерно половину условий для достижения одного равновесного состояния. Следовательно, для нормальной работы ректификационной колонны требуется в два раза больше физических тарелок, чем теоретических (расчетных) минимум – 50-60 штук.

Насадки. Зачастую тарелки ставят только на промышленные установки. В лабораторных и домашних ректификационных колоннах в качестве контактных элементов используются насадки – скрученная специальным образом медная (либо стальная) проволока или сетки для мытья посуды. В этом случае флегма стекает тонкой струйкой по всей поверхности насадки, обеспечивая максимальную площадь контакта с паром.



Насадки из мочалок самые практичные

Конструкций очень много. Недостаток самодельных проволочных насадок – возможная порча материала (почернение, ржавчина), заводские аналоги лишены подобных проблем.

Свойства ректификационной колонны

Материал и размеры. Цилиндр колонны, насадки, куб и дистилляторы обязательно делают из пищевого, нержавеющего, безопасного при нагревании (равномерно расширяется) сплава. В самодельных конструкциях в качестве куба чаще всего используются бидоны и скороварки.

Минимальная длина трубы домашней ректификационной колонны – 120-150 см, диаметр – 30-40 мм.

Система нагрева. В процессе ректификации очень важно контролировать и быстро регулировать мощность нагрева. Поэтому самым удачным решением является нагрев с помощью ТЭНов, вмонтированных в нижнюю часть куба. Подвод тепла через газовую плиту не рекомендуется, поскольку не позволяет быстро менять температурный диапазон (высокая инертность системы).

Контроль процесса. Во время ректификации важно следовать инструкции производителя колонны, в которой обязательно указываются особенности эксплуатации, мощность нагрева, флегмовое число и производительность модели.



Термометр позволяет точно контролировать процесс отбора фракций

Очень сложно контролировать процесс ректификации без двух простейших приспособлений – термометра (помогает определить правильную степень нагрева) и спиртометра (измеряет крепость полученного спирта).

Производительность. Не зависит от размеров колонны, поскольку, чем выше царга (труба), тем больше физических тарелок находится внутри, следовательно, качественнее очистка. На производительность влияет мощность нагрева, которая определяет скорость движения потоков пара и флегмы. Но при переизбытке подаваемой мощности колонна захлебывается (перестает работать).

Средние значения производительности домашних ректификационных колон – 1 литр в час при мощности нагрева 1 кВт.

Влияние давления. Температура кипения жидкостей зависит от давления. Для успешной ректификации спирта давление вверху колонны должно быть приближено к атмосферному – 720-780 мм.рт.ст. В противном случае при уменьшении давления снизится плотность паров и увеличится скорость испарения, что может стать причиной захлебывания колонны. При слишком высоком давлении падает скорость испарения, делая работу устройства неэффективной (нет разделения смеси на фракции). Для поддержания правильного давления каждая колонна для ректификации спирта оборудована трубкой связи с атмосферой.

О возможности самодельной сборки. Теоретически, ректификационная колонна не является очень сложным устройством. Конструкции успешно реализуются умельцами в домашних условиях.

Но на практике без понимания физических основ процесса ректификации, правильных расчетов параметров оборудования, подбора материалов и качественной сборки узлов, использование самодельной ректификационной колоны превращается опасное занятие. Даже одна ошибка может привести к пожару, взрыву или ожогам.

В плане безопасности прошедшие испытания (имеют подтверждающую документацию) заводские колонны надежнее, к тому же поставляются с инструкцией (должна быть подробной). Риск возникновения критической ситуации сводится только к двум факторам – правильной сборке и эксплуатации согласно инструкции, но это проблема почти всех бытовых приборов, а не только колонн или самогонных аппаратов.

Принцип работы ректификационной колонны

Куб наполняют максимум на 2/3 объема. Перед включением установки обязательно проверяют герметичность соединений и сборки, перекрывают узел отбора дистиллята и подают охлаждающую воду. Только после этого можно начать нагрев куба.

Оптимальная крепость подаваемой в колонну спиртосодержащей смеси – 35-45%. То есть в любом случае перед ректификацией требуется дистилляция браги. Полученный продукт (спирт-сырец) потом перерабатывают на колонне, получая почти чистый спирт.

Это значит, что домашняя ректификационная колонна не является полной заменой классического самогонного аппарата (дистиллятора) и может рассматриваться лишь как дополнительная ступень очистки, более качественно заменяющая повторную дистилляцию (вторую перегонку), но нивелирующая органолептические свойства напитка.

Справедливости ради отмечу, что большинство современных моделей ректификационных колон предполагают работу в режиме самогонного аппарата. Для перехода к дистилляции нужно лишь перекрыть штуцер соединения с атмосферой и открыть узел отбора дистиллята.

Если одновременно перекрыть оба штуцера, то нагретая колонна может взорваться из-за избыточного давления! Не допускайте подобных ошибок!

На промышленных установках непрерывного действия зачастую брагу перегоняют сразу, но это возможно благодаря гигантским размерам и особенностям конструкции. Например, стандартом считается труба 80 метров высоты и 6 метров диаметра, в которой установлено в разы больше контактных элементов, чем на ректификационных колоннах для дома.



Размер имеет значение. Возможности спиртзаводов в плане очистки куба больше, чем при домашней ректификации

После включения жидкость в кубе доводится нагревателем до кипения. Образовавшийся пар поднимается вверх по колонне, затем попадает в дефлегматор, где конденсируется (появляется флегма) и по стенкам трубы возвращается в жидком виде в нижнюю часть колонны, на обратном пути контактируя с поднимающимся паром на тарелках или насадках. Под действием нагревателя флегма снова становится паром, а пар вверху опять конденсируется дефлегматором. Процесс становится циклическим, оба потока непрерывно контактируют друг с другом.

После стабилизации (пара и флегмы достаточно для равновесного состояния) в верхней части колонны скапливаются чистые (разделенные) фракции с самой низкой температурой кипения (метиловый спирт, уксусный альдегид, эфиры, этиловый спирт), внизу – с самой высокой (сивушные масла). По мере отбора нижние фракции постепенно поднимаются вверх по колонне.

В большинстве случаев стабильной (можно начинать отбор) считается колонна, в которой температура не меняется на протяжении 10 минут (общее время прогрева – 20-60 минут). До этого момента устройство работает «само на себя», создавая потоки пара и флегмы, которые стремятся к равновесию. После стабилизации начинается отбор головной фракции, содержащей вредные вещества: эфиры, альдегиды и метиловый спирт.

Ректификационная колонна не избавляет от необходимости разделять выход на фракции. Как и в случае с обычным самогонным аппаратом приходится собирать «голову», «тело» и «хвост». Разница только в чистоте выхода. При ректификации фракции не «смазываются» – вещества с близкой, но хотя бы на десятую долю градуса разной температурой кипения не пересекаются, поэтому при отборе «тела» получается почти чистый спирт. Во время обычной дистилляции разделить выход на фракции, состоящие только из одного вещества, невозможно физически какая бы конструкция не использовалась.

Если колонна выведена на оптимальный режим работы, то при отборе «тела» трудностей не возникает, так как температура всё время стабильна.

Нижние фракции («хвосты») при ректификации отбирают, ориентируясь по температуре или по запаху, но в отличие от дистилляции эти вещества не содержат спирта.

Возвращение спирту органолептических свойств. Зачастую «хвосты» требуются, чтобы вернуть спирту-ректификату «душу» – аромат и вкус исходного сырья, например, яблока или винограда. После завершения процесса в чистый спирт добавляют некоторое количество собранных хвостовых фракций. Концентрацию рассчитывают эмпирическим путем, экспериментируя на небольшом количестве продукта.

Преимущество ректификации в возможности добыть практически весь содержащийся в жидкости спирт без потери его качества. Это значит, что «головы» и «хвосты», полученные на самогонном аппарате, можно переработать на ректификационной колонне и получить безопасный для здоровья этиловый спирт.

Захлебывание ректификационной колонны

Каждая конструкция имеет предельную скорость движения пара, после которой течение флегмы в кубе сначала замедляется, а потом и вовсе прекращается. Жидкость накапливается в ректификационной части колонны и происходит «захлебывание» – прекращение тепломассообменного процесса. Внутри происходит резкий перепад давления, появляется посторонний шум или бульканье.

Причины захлебывания ректификационной колонны:

  • превышение допустимой мощности нагрева (встречается наиболее часто);
  • засорение нижней части устройства и переполнение куба;
  • очень низкое атмосферное давление (характерно для высокогорий);
  • напряжение в сети выше 220В – в результате мощность ТЭНов возрастает;
  • конструктивные ошибки и неисправности.

Модульная тарельчатая колонна. Практика на автоматике БКУ - 011М.

Медные конусные крышки. Колонна медного вкуса. Теория и практика.

Самогонный аппарат. Колпачковая колонна ХД/3-500 ККС-Н. Часть 1. Новинка 2016 года.

Самогонный аппарат. Колпачковая колонна ХД/3-500 ККС-Н. Часть 2. Новинка 2016 года.

Самогонный аппарат. Тарельчатая колонна.

Что такое тарельчатая колонна и зачем она вообще нужна... Отличие существенное от царги заглючается в том что в тарельчатой колонне мы используем вместо насадки СПН (спирально призматической насадки) собственно тарелки. При помощи тарельчатой колонны мы не получим чистый спирт. Однако мы можем получить на ней так называемый недоректификат крепостью 90-95 об. Тоесть это еще и не спирт, но уже и не дистиллят. Очень сильно очищенный дистиллят, в котором еще остались нотки исходного сырья. Данной технологии уже более сотни лет, и пользуются ей активно винокуры по всему миру. Наша страна в этом смысле последние годы не исключение. Данные колонны набирают огромную популярность.

Разберем основные отличия колонн для правильного понимания выбора конкретной колонны.

  1. Как и все наше оборудование, тарельчатые колонны отличают по сериям: ХД/4 или ХД/3. Тут все просто. Если у Вас уже есть оборудование ХД, выбор делается по соответствующей серии оборудования. В случае если Вы только собираетесь приобретать оборудование, то нужно понимать отличие серий ХД/4 и ХД/3. Серия ХД/4 более бюджетная, у нее оптимальное соотношение цена качество. Серия ХД/3 имеет более высокую цену, но и более высокую производительность.
  2. Используемы материалы при изготовлении колонн. Это либо пищевая нержавеющая сталь, либо кварцевое стекло. В последнем случае Вы имеете возможность наблюдать за процессом визуально, что доставляет истинное удовольствие. Не стоит забывать, что в первую очередь мы занимаемся этим хобби ради удовольствия.
  3. Колонны отличаются так же по высоте и по количеству находящихся в них тарелок. По высоте колонны бывают двух размеров: 375 и 750мм соответственно. На укороченной колонне можно получить "недоректификат" крепостью 91-92С, на колонне 750мм можно получить "недоректификат" около 95С. Поскольку тарельчатые колонны разборны, то количество тарелок в колонне может регулируваться винокуром самостоятельно.
  4. Тип исполнения тарелок. Тарелки изготавливаются двух типов: провальные и колпачковые. Сказать однозначно какие из тарелок лучше и на каких тарелках напиток получется вкуснее сложно. Дело в том что тарелки провальные хороши если мы используем стабильную мощность нагрева, без скачков в сети. Если сеть нестабильна, то можно использовать стабилизатор мощности нагрева например. Тарелки же колпачкового типа более неприхотливы и нагрев может использоваться любой. Однако в силу сложности изготовления таких колонн они более дорогие. Но и более эстетичные в процессе работы.
  5. Материалы изготовления тарелок. Провальные тарелки изготавливаются из инертного фторопласта. Колпачковые же тарелки изготавливаются либо из нержавейки, либо из меди. Нержавейка как известно инертна. И поэтому напиток получаемой на ее поверности не имеет никаких характерных дополнительных вкусов, кроме исходного сырья. Медь же как считается абсорбирует вредную серу, выделяемую в процессе перегонки, тем самым избавляя напиток от неприятных запахов и вкуса. У сторонников меди и нержавейки много поклонников. У каждого свои доводы в пользу используемого материала тарелок.

Подробней узнать о работе с тарельчатыми колоннами можно тут.

Ректификационные колонны отличаются, в основном, конструкцией внутреннего устройства для распределения жидкой и паровой фаз. Взаимодействие жидкости и пара осуществляется в колоннах путём барботирования пара через слой жидкости на тарелках или же путём поверхностного контакта пара и жидкости на насадке или на поверхности жидкости, стекающей тонкой плёнкой.

В ректификационных установках применяют три основных типа колонн:

  • 1) колпачковые,
  • 2) сетчатые,
  • 3) насадочные,
  • 4) барботажные.

Разработаны также конструкции аппаратов для ректификации, в которых интенсификация процесса разделения достигается под действием центробежной силы (центробежные ректификаторы).

Колпачковые колонны

Эти колонны наиболее распространены в ректификационных установках. На рис. 5 схематически изображена колонна небольшого диаметра, состоящая из тарелок 1, на каждой из которых имеется один колпачок 2 круглого сечения и патрубок 3 для прохода пара. Края колпачка погружены в жидкость. Благодаря этому на тарелке создается гидравлический затвор, и пар, выходящий из колпачка, должен проходить через слой жидкости, находящийся на тарелке. Колпачки имеют отверстия или зубчатые прорези для раздробления пара на мелкие пузырьки, т.е. для увеличения поверхности его соприкосновения с жидкостью.

Приток и отвод жидкости, а также высоту жидкости на тарелке регулируют при помощи переливных трубок 4, которые расположены на диаметрально противоположных концах тарелки; поэтому жидкость течет на соседних тарелках во взаимно противоположных направлениях.

Рис. 5. Схема устройства тарельчатой (колпачковой) колонны: 1-тарелка; 2-колпачок; 3-паровой патрубок; 4-переливная трубка.

Схема работы колпачковой тарелки изображена на рис. 6. Выходящие через прорези колпачки пузырьки пара сливаются в струйки, которые проходят через слой жидкости, находящейся на тарелке, и над жидкостью образуется слой пены и брызг, - основная область массообмена и теплообмена между паром и жидкостью на тарелке.

Процесс барботажа на тарелке весьма сложен. Проводившиеся до сих пор исследования (В.Н. Стабников, А.М. Шуер и др.) дают возможность представить лишь качественную картину процесса.

При движении струйки пара обычно сливаются друг с другом; при этом некоторая часть сечения прорезей обнажается и образуются каналы, по которым газ проходит из-под колпачка сквозь жидкость. Поэтому поверхность взаимодействия газа с жидкостью непосредственно в зоне барботажа невелика. Основная зона фазового контакта находится в области пены и брызг над жидкостью, которые образуются вследствие распыления пара в жидкости и уноса брызг при трении пара о жидкость.

Интенсивность образования пены и брызг зависит от скорости пара и глубины погружения колпачка в жидкость. Сечение и форма прорезей колпачка имеют второстепенное значение, но желательны узкие прорези, так как они разбивают газ на более мелкие струйки, увеличивая поверхность соприкосновения с жидкостью.

Рис. 6.

Работа колпачка в оптимальных условиях при предельной скорости и наибольшего к.п.д. высота открытия прорези колпачка наибольшая, что способствует увеличению пути паров и времени их контакта с жидкостью.

Виды колпачковых тарелок

Для создания достаточной поверхности соприкосновения между паром и жидкостью на тарелках обычно устанавливают не один, а большое число колпачков (рис. 7).

Колпачки располагают на близком расстоянии друг от друга (равен в среднем 1,5 диаметра колпачка) с тем, чтобы пузырьки, выходящие из соседних колпачков, прежде чем принять вертикальное направление движения, могли бы сталкиваться друг с другом.

Типовые Колпачковые тарелки изготовляют с радиальным и с диаметральным переливом жидкости. Тарелки первого типа (рис. 3, а) представляют собой вырезанные из стального листа диски 1 и 2, которые крепятся на болтах 7 и прокладках 8 к опорному кольцу 3. Колпачки 4 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным переливным трубкам 5, течёт к центру и сливается на следующую тарелку по центральной переливной трубке 6, затем снова течёт к периферии и т.д.


Рис. 7.

  • 1 и 2-диски; 3-опорное кольцо; 4-колпачки; 5-периферийные колпачковые трубки; 6-центральная переливная трубка; 7-болты; 8-прокладки.

Тарелки этого типа (рис. 8) представляют собой срезанный с двух сторон диск 1, установленный на опорном листе 2, с одной стороны тарелка ограничена приёмным порогом 3, а с другой стороны - переливным порогом 5 со сменной гребенкой 6, при помощи которой регулируют уровень жидкости на тарелке.

В тарелке этой конструкции периметр слива увеличен путём замены сливных труб сегментообразными отверстиями, ограниченными перегородками 7 для того, чтобы уменьшить вспенивание и брызгообразование при переливе жидкости.


Рис. 8.

  • 1-диск; 2-опорный лист; 3-приёмный порог; 4-колпачки; 5-переливной порог; 6-сменная гребёнка; 7-перегородка.

В тарелках с туннельными колпачками (рис. 9) колпачки 1 представляют собой стальные штампованные пластины полукруглого сечения с гребенчатыми краями; каждый колпачок устанавливают над желобом 2 строго горизонтально при помощи двух уравнительных шпилек 3. Жидкость сливается через переливной порог 4 в сегментный карман 5, затем через три переливных трубки 6 - в приёмный сегментный карман следующей тарелки. Здесь образуется гидравлический затвор, и поднимающиеся по колонне пары не могут проходить на тарелку, лежащую выше, минуя колпачки. Ток жидкости на тарелках - диаметральный.

На тарелках такого типа можно легко регулировать высоту слоя жидкости, быстро производить установку в горизонтальной плоскости имеющегося на ней небольшого числа колпачков и, следовательно, создавать благоприятные условия для равномерного распределения паров. Конструкция тарелки отличается простотой монтажа и демонтажа.


Рис. 9.

1-колпачки; 2-желоб; 3-шпилька; 4-переливной порог; 5-сегментный карман; 6-переливные трубки; 7-опорный уголок с вырезами.

Ректификационные тарельчатые колонны с круглыми (капсульными) и туннельными колпачками, предназначенные для работы под атмосферным давлением, имеют диаметры 1000, 1200, 1400, 1600, 1800, 2200, 2600 и 3000 мм. Эти колонны изготавливают из углеродистой стали. Разделение химически активных смесей производят в колоннах из кислотоупорных сталей, высококремнистого чугуна и других химически стойких материалов.

Сетчатые колонны

Колонны этого типа (рис. 10) состоят из вертикального цилиндрического корпуса 1 с горизонтальными тарелками 2, в которых просверливается значительное число мелких отверстий, равномерно распределенных по всей поверхности тарелки. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3. Нижние концы трубок 3 погружены в стаканы 4 на лежащих ниже тарелках и образуют гидравлические затворы.

Рис. 10.

1-корпус; 2-сеичатая тарелка; 3-переливная трубка; 4-стакан


Рис. 11.

Пар проходит через отверстия тарелки (рис. 11) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг - основная область массообмена и теплообмена на тарелке.

В определенном диапазоне нагрузок сетчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для сетчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.

Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.

Проскок жидкости у сетчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась не тарелках и не увлекалась механически паром. Обычно диаметр отверстий сетчатых тарелок принимают равным 0,8-3 мм.

Сетчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, сетчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.

Сетчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.

При внезапном прекращении подвода пара или значительном снижении его давления тарелки сетчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.

Очистка, промывка и ремонт сетчатых тарелок производятся относительно удобно и легко.

Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования сетчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).

Для повышения к.п.д., в сетчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. Существует сетчатая колонна с принудительным круговым движением жидкости на тарелках - одна из современных конструкций сетчатых тарелок, в которых длительный контакт достигается принудительным круговым движением жидкости на тарелке при одинаковом направлении ее движения на всех тарелках колонны.

Насадочные колонны

В таких колоннах обычно применяется кольцевая насадка. Наиболее распространены кольца размером 25?25?3 мм. В укрепляющей колонне количество жидкости меньше количества поднимающихся паров на количество отводимого дистиллята, в исчерпывающей же колонне количество жидкости больше, чем в укрепляющей, на количество вводимой смеси.

Неравномерное распределение жидкости по сечению колонны может привести к недостаточно четкому разделению компонентов, особенно при большом диаметре колонны. Низкое гидравлическое сопротивление насадочных колонн существенно лишь при ректификации в вакууме.

Насадочные ректификационные колонны применяются главным образом небольшого диаметра (примерно до 1 м), а также при ректификации в вакууме и для разделения химически агрессивных веществ.

Барботажные колонны

Применяются с колпачковыми, ситчатыми и провальными тарелками. Значительное сопротивление барботажных колонн при ректификации обычно не существенно (кроме процесса ректификации в вакууме), так как вызывает лишь некоторое повышение давления и, следовательно, температуры кипения в нижней части колонны и не связано с дополнительным расходом энергии.

Барботажные колонны являются наиболее распространенными ректификационными аппаратами благодаря возможности разделения в них компонентов с любой степенью четкости. Чаще всего применяются колонны с колпачковыми тарелками. Колонны с ситчатыми и провальными тарелками применяются при разделении незагрязненных жидкостей в установках, работающих с постоянной нагрузкой.

Центробежные ректификаторы

Для интенсификации массообмена и повышения эффективности разделения, были предложены аппараты, работающие на принципе использования центробежной силы (колонны с вращающейся трубой, горизонтальные аппараты с вращающимся спиралевидным ротором).

Центробежный пленочный ректификационный аппарат состоит из неподвижного кожуха, в котором вращается с большой скоростью ротор, состоящий из спиральной металлической ленты, ограниченной изнутри и снаружи сетчатыми цилиндрами. Начальная смесь движется по стенкам спирали в виде тонкой пленки от центра к периферии. Пар движется с большой скоростью противотоком к жидкости, и взаимодействие фаз происходит на поверхности плёнки. Интенсивность массообмена определяется сопротивление жидкой и паровой пленок. Поэтому эффективность пленочной ректификации возрастает и турбулизацией потоков пара и жидкости.

Несмотря на сложность устройства, центробежные ректификационные аппараты могут быть успешно применены при разделении смесей, требующем очень большого числа тарелок.

Кубы и дефлегматоры

(Теплообменные устройства ректификационных колонн).

Куб периодически действующей колонны обычно выполняют в виде горизонтального котла с змеевиком для обогрева. Ёмкость куба должна быть рассчитана на количество всей смеси, перегоняемой за одну операцию.

В колоннах непрерывного действия куб служит лишь для испарения части стекающей вниз жидкости и является, таким образом, кипятильником. По устройству такие кипятильники сходны с кипятильниками выпарных аппаратов. При небольших поверхностях теплообмена применяют теплообменники с обогревом при помощи змеевика или в виде горизонтальной трубчатки, пронизывающей всю нижнюю часть колонны, причем греющий пар пропускается по трубам (рис. 12, а).

При больших поверхностях теплообмена применяют выносные кубы с естественной циркуляцией теплоносителя (рис. 12, б), аналогичные по устройству выпарным аппаратам с выносным кипятильником.

Рис. 12. Устройство кипятильников ректификационных колонн:

а - горизонтальная трубчатка; б - выносной кипятильник.

Дефлегматоры выполняют обычно в виде вертикальных или горизонтальных кожухотрубных теплообменников. Чаще всего вода проходит по трубам, пары движутся в пространстве. Иногда пары пропускают по трубам, а воду - в межтрубном пространстве; в этом случае очистка труб от накипи затруднительна.

В последнее время довольно много людей не доверяют качеству алкоголя, предлагаемого магазинами, да и стоимость такой продукции высока. Поэтому зачастую на кухнях рядом с различными бытовыми приборами можно увидеть самогонный аппарат. Ведь домашние спиртосодержащие напитки экологически чистые и для здоровья в разумных количествах менее вредны. Однако перед всеми винокурами стоит проблема: очистка алкоголя от вредных примесей и неприятного запаха. Опытными и экономными хозяевами для этого применяется ректификационная колонна. Ну а новичкам, чтобы не отставать от более продвинутых винокуров, нужно узнать, что такое ректификационная колонна в самогонном аппарате.

Ректификационная колонна позволяет производить спиртосодержащие напитки, такие как водка, виски, наливки высокой очистки и высокой крепости (до 97 %). Устройство обычной ректификационной колонны следующее:

  1. Испарительный куб.
  2. Колонна со специальной насадкой, в которой идут процессы тепломассообмена (царга).
  3. Дефлегматор.
  4. Узел сбора дистиллята.

Испарительный куб

Испарительный куб представляет собой емкость, в которой нагревается брага. В процессе этого она испаряется, и пар поднимается по колонне. Вверху ректификатора жидкость разделяется на отдельные фракции.

Испарительный куб нагревают на любом виде плит. А некоторые его модели предполагают наличие нагревательного прибора. Покупной куб обязательно оснащается термометром, который позволяет вести контроль за нагревом браги. Испарительный куб абсолютно герметичен. Во время кипения важно, чтобы жидкость и пар оставались внутри. Куб нельзя заполнять брагой больше чем на 2/3 его объема, иначе жидкость будет выплескиваться из емкости.

Царга

В этой части ректификационной колонны происходят следующие процессы:

  1. Брага, находящаяся в кубе, под действием тепла испаряется и поднимается по колонне. Там установлен холодильник.
  2. Дефлегматор обеспечивает конденсацию паров спирта и получение дистиллята.
  3. Дистиллят опускается по спиртовой колонне. В этот момент происходит столкновение его с паром - тепломассообмен.
  4. В результате этого процесса испаряемая часть фракции идет вверх колонны. Здесь она конденсируется, а затем уходит в канал отбора.

Не стоит забывать, что если увеличить высоту колонны, то тепломассобмен проходит активнее. Это приводит к тому, что на выходе получается более ректификованный спирт.

Ректификационная насадка

Ректификационная насадка имеет две части:

  1. Узел отбора спирта. В промышленной ректификационной колонне эта деталь снабжена смотровым стеклом, которое позволяет определить скорость отбора спирта.
  2. Дефлегматор. Иногда эта часть называется холодильником. Дефлегматор расположен вверху ректификационной колонны. Он нужен для сбора самогонных паров и превращения их во флегму, которая отпускается вниз. Здесь происходит ее обогащение парами спирта. После того как флегма попадет в узел отбора, испаряемая часть выходит наружу.

Ректификационная колонна устроена просто, поэтому принцип ее работы поддается несложному объяснению. Этот механизм выполняет функцию фильтра, в котором оседают сивушные масла. В нем происходит постоянное взаимодействие спиртовых паров и жидкости, другими словами, ректификация. После того как брага прогреется до 70 градусов в испарительном кубе, спирт начинает испаряться. Он поднимается по трубе и оказывается в дефлегматоре. В этой части с паром происходит повторная конденсация при охлаждении водой. Конденсат (флегма) стекает и снова встречается с горячим паром. Происходит обмен между двумя составляющими - процесс насыщения флегмы паром, а пара - жидкостью, которая имеет низкую температуру кипения.

Окончательная конденсация пара идет в холодильнике. На выходе получается очищенный спирт, который стекает в емкость для приема. Вверху ректификационной колонны расположен атмосферный клапан. Он нужен для того, чтобы пары, не имеющие в своем составе спирта и не подверженные конденсации, покидали механизм.

Непрерывная ректификация идет за счет специальных контактных элементов - физических тарелок в покупных ректификационных колоннах и металлических губок или стеклянных шариков в образцах, изготовленных своими руками. Эти части нужны для увеличения эффективности взаимодействия пара и флегмы.

Виды колонн

Существуют следующие виды ректификационных колонн:

  1. Тарельчатого типа. Такие агрегаты имеют внутри тарелки, которые установлены на определенном расстоянии. На них и осуществляется тепломассообмен. Ректификационные колонны такого вида стоят дорого и довольно громоздки. Но обладают главным достоинством - фракции отделяются точно.
  2. Насадочного типа. Механизм имеет медную насадку двух видов. Первый - это заполняющая колонну россыпь мелких элементов из нержавеющей стали. Неравномерное размещение их затрудняет проход паров и отток флегмы. Второй тип - насадка Панченкова, которая совершает эффективный тепломассообмен.

Можно ли сделать полноценную ректификационную колонну своими руками?

В продаже есть удобные и качественные самогонные аппараты с ректификационной колонной. Но их стоимость высока. Поэтому мужчины, которые умеют работать с металлами, могут самостоятельно изготовить агрегат. Для создания колонны применяют материалы, не вступающие в химические реакции со спиртом и не выделяющие со временем различных элементов, вредных для здоровья человека. Для создания агрегата потребуются:

  1. Емкость нужного объема в качестве перегонного куба. Это может быть любой медный или эмалированный сосуд. Подойдет и нержавеющая сталь. Если будет небольшой выход алкоголя, то используют и скороварку.
  2. Корпус колонны в виде царги или трубы. На прилавках магазинов можно быстро найти уже готовую 15-сантиметровую царгу. Приобретают несколько штук и соединяют их. А можно без проблем сделать эту деталь из нержавеющей трубы диаметром 0,5 сантиметра и толщиной стенок 1,5–2 миллиметра. На ней с обеих сторон делают резьбу: низ присоединяют к кубу, а верх - к дефлегматору. Царга должна быть не менее одного метра в высоту, иначе вредные фракции не будут удаляться, и сивушные масла окажутся в дистилляте. В результате получится продукт низкого качества. Если делать трубу длиннее 1,5 метра, то увеличится время на ректификацию, а эффективность останется прежней.
  3. Дефлегматор для охлаждения и конденсации пара. Он может быть рубашечным или прямоточным. Изготовляют из двух труб, между которыми движется вода. Дефлегматор Димрота считается более эффективным. Корпусом становится труба, внутри которой есть тонкая трубка в виде спирали. В ней и циркулирует холодная вода. Кожухотрубный дефлегматор - из нескольких труб. В самой большой крепят маленькие. В них пар конденсируется.
  4. Насадки для царги. Они увеличивают поверхности, по которым течет флегма. Значит, вредные примеси осаждаются и не попадают в домашний алкоголь. Насадки в виде керамических шариков или нарезанных кухонных мочалок из нержавейки должны полностью заполнять царгу. Используют и насадку Панченкова. Она является самым лучшим вариантом.
  5. Узел для отбора дистиллята.
  6. Холодильник. Эта деталь изготовляется таким же образом, как и рубашечный дефлегматор. Но берутся трубки с меньшим диаметром. В холодильнике есть проходы для воды. В нижнее отверстие она входит, из верхнего жидкость направляется по трубкам к дефлегматору.
  7. Мелкие детали, чтобы соединить части.
  8. Термометр.

Метод ректификации имеет и сторонников, и противников. Он может похвастаться следующими положительными сторонами:

  1. На выходе получается крепкий спирт высокого качества, который не содержит вредных для здоровья человека примесей. Он станет прекрасной основой для любого алкогольного напитка.
  2. Можно приготовить самогон с нужной органолептикой.
  3. Прибор довольно просто сконструировать самостоятельно.

Винокуры отмечают недостатки:

  1. Весь процесс ректификации длится долго. В час получается всего один литр дистиллята.
  2. Производственные конструкции стоят дорого.

Однако, учитывая несомненную пользу колонны, ее все-таки стоит приобрести. И тогда к качеству самогона претензий не будет.

Для проведения процесса ректификации применяют аппараты различных конструкций в основном колонного типа. По типу контактных устройств различают насадочные, тарельчатые и пленочные аппараты. Область применения тех или иных аппаратов определяется свойствами разделяемых смесей, производительностью и т.д.

Рис. 6.9.1. Колонные аппараты основных типов:

а - насадочный; б - тарельчатый; в - пленочный; 1 - корпус аппарата; 2 - распределитель; 3 - ограничительная решетка; 4 - насадка; 5 - опорная решетка; 6 - тарелка; 7 - переточное устройство; 8 - поверхность контакта.

Рис. 6.9.2. Основные схемы движения потоков пара и жидкости в контактной зоне:

а - противоток; б - прямоток; в - перекрестный ток.

По способу организации относительного движения контактирующих потоков жидкости и пара различают контактные устройства с противоточным, прямоточным и перекрестноточным движением фаз (рис. 6.9.2). Независимо от схемы движения потоков в пределах отдельного контактного устройства (контактной ступени) в целом по аппарату, как правило, осуществляется противоток пара и жидкости.

Насадочные колонны нашли применение в тех случаях, когда необходимо обеспечить малую величину задержки жидкости в колонне, небольшой перепад давления, а также для малотоннажных производств. Были созданы типы насадок (кольца Палля, из просечного металла, сеток и др.), которые оказались достаточно эффективными в колоннах большого диаметра.

Основные типы насадок . Насадки представляют собой твердые тела различной формы, которые загружают в корпус колонны внавал или укладывают определенным образом. Развитая поверхность насадок обусловливает значительную поверхность контакта пара и жидкости. Известны многие конструктивные модификации насадочных тел, основные типы которых приведены на рис. 6.9.3.

Для заполнения насадочных колонн широко применяют кольца Рашига, изготовленные из различных материалов, что обеспечивает универсальность их практического использования. Однако кольца Рашига обладают относительно невысокой производительностью и сравнительно высоким сопротивлением. Последнее ограничивает их применение для вакуумных процессов. Созданные различные модификации колец Рашига- кольца Палля, кольца Борад и другие позволили получить лучшие рабочие характеристики, чем при кольцах Рашига.

Рис. 6.9.3. Элементы нерегулярных насадок:

1-4 – кольца Рашига, Лессинга, Палля и кольца с крестообразными перегородками; 5, 6 – круглые и трехгранные пружины; 7, 9 – керамические и штампованные металлические насадки Инталлокс; 8 – насадка Берля

В связи с необходимостью создания насадок с низким гидравлическим сопротивлением были разработаны различные варианты регулярной укладки насадочных тел, блочные насадки, а также насадки из сеток различных конструкций.

К регулярным относятся насадки, расположение элементов которых в объёме колонны подчинено определённому геометрическому порядку создающему упорядоченные каналы для прохода элементов. Примеры таких насадок показаны на рис.6.9.4.

Элементы плоскопараллельной насадки 1 могут быть выполнены из досок, стекол, металлических пластин или сетки.

Насадка Зульцера 2 состоит из перемежающихся слоев гофрированной сетки или перфорированного металлического листа, причем гофры в соседних слоях повернуты в противоположную сторону.

Насадка Гудлоу 3 (иногда ее называют насадкой Панченкова) представляет собой свернутую спираль из сетчатого чулка. В колонну такие свитые пакеты укладываются послойно. Поток пара через них проходит в щелях между сетчатыми слоями.

Наклонно-пакетная насадка 4 представляет собой прямоугольные пакеты из уложенных в них слоев чулочной сетки, которые устанавливаются под углом 45-60° друг к другу (или вертикально).

Рис. 6.9.4. Регулярные насадки:

1 – плоскопараллельная; 2 – Зульцера; 3 – Гудлоу; 4 – пакетная с наклонными секциями

Основными размерными характеристиками насадок являются удельная поверхность и свободный объем. Под удельной поверхностью насадки f понимают суммарную поверхность всех насадочных тел в единице объема аппарата. Единица измерения в СИ м 3 /м 3 . Чем больше удельная поверхность насадки, тем выше ее эффективность, но больше гидравлическое сопротивление и меньше производительность.

Под свободным объемом насадки ε понимают суммарный объем пустот между насадочными телами в единице объема аппарата. Единица измерения в СИ м 3 /м 3 . Чем больше свободный объем насадки, тем выше ее производительность, меньше сопротивление и эффективность. С увеличением размеров насадочных тел возрастает производительность, но одновременно снижается эффективность разделения.

Рис. 6.9.5. Распределители жидкости:

7 – перфорированная плита; 2 – плита с патрубками; 3 – плита с наклонными отражателями струй; 4 – напорный маточник-распылитель

Чтобы предотвратить растекание жидкости к стенкам колонны, насадку загружают в колонну отдельными слоями высотой от 1,5 до 3 м. Между слоями насадки устанавливают распределители различных конструкций (рис. 6.9.5).

Насадку укладывают на опорные распределительные решетки и плиты. Свободное сечение таких устройств должно быть по возможности больше и приближаться к величине свободного объема насадки. Чтобы насадка работала эффективно, поверхность элемента насадки должна хорошо смачиваться жидкостью.

Гидравлика насадочных колонн . В зависимости от нагрузок колонны по пару и жидкости изменяется характер взаимодействия между ними, этим и определяется предельная скорость пара в насадочной колонне. При некоторых величинах паровой и жидкостной нагрузок резко увеличиваются количество удерживаемой в насадке жидкости и гидравлическое сопротивление слоя насадки. Такой режим называется захлебыванием колонны и считается верхним пределом устойчивой ее работы.

Тарельчатые колонны . В тарельчатых колоннах пар (или газ) проходит через слой жидкости, находящейся на тарелке. При этом пар дробится на мелкие пузыри и струи, которые с большой скоростью движутся в жидкости. Образуется газожидкостная система, которую называют пеной. Работа тарельчатой колонны показана на рисунке.



Рис. 6.9.7. Основные типы ректификационных тарелок:

I – решетчатая провальная; II – сетчатая провальная; III – ситчатая перекрестноточная; IV – колпачковая (а, б, в - капсюльный, туннельный и желобчатый колпачки); V – из S-образных элементов; VI - клапанная (а, б, в, г); VII – струйная (а, б); VIII - вихревая (а -устройство вихревого элемента); 1 – корпус колонны; 2 – полотно (основание) тарелки; 3 – отверстия для прохода паров; 4 – переливные трубы; 5 – сливные сегментные карманы; 6 – сливные пластины (перегородки); 7 – паровые патрубки; 8 – колпачки; 9 – клапаны; 10 – ограничители подъема клапана; 11, 12 – фасонные отгибы полотна тарелки; 13 – просечки вихревого элемента; 14 – отражатели (п и ж – направления движения пара и жидкости)


Основные конструкции ректификационных тарелок показаны схематично на рис. 6.9.7.

Простейшая из них – решетчатая провальная тарелка (рис. 6.9.7, I ), полотно которой имеет геометрически упорядоченные ряды щелей (размерами примерно 10 x 150 мм), через которые вверх проходит пар, барботируя через слой жидкости на тарелке, и через которые часть избыточной жидкости стекает (проваливается) струями на нижележащую тарелку.

Такая тарелка очень чувствительна к изменению нагрузки по жидкости, при изменениях которой от расчетной на 20-30% тарелка может либо захлебнуться, либо не удерживать на полотне слой жидкости. Такой же эффект будет иметь место и при колебаниях нагрузки по парам.

Дырчатая волнообразная тарелка (рис. 6.9.7, II )является усовершенствованной решетчатой. Полотно ее имеет не щели, а отверстия диаметром 10-15 мм. Профиль полотна в разрезе – синусоидальный. Это позволяет разделить зоны преимущественного прохода пара (верхние изгибы тарелки) и стока жидкости (нижние изгибы полотна тарелки). Слой жидкости на тарелке удерживается выше верхних изгибов, и потому пар барботирует через этот слой. Тарелка рассчитана на колонны малого диаметра и применяется в колоннах стабилизации бензина и разделения углеводородных газов.

Обе тарелки (I и II на рис. 6.9.7.) являются провальными, и колонна с такими тарелками работает в режиме противотока пара и жидкости. Остальные из показанных на рис. 6.9.7 тарелок являются перекрестноточными, т.е. жидкость на них движется не навстречу потоку пара, а перпендикулярно или под углом, близким к прямому.

В зависимости от величины жидкостной нагрузки переток ее с тарелки на тарелку осуществляется одним, двумя и более потоками (рис. 6.9.8).

Рис. 6.9.8. Схемы потоков жидкости на тарелках с переливными устройствами:

а – однопоточная; б – двухпоточная; в – трехпоточная; г – четырехпоточная; д – с кольцевым движением жидкости; е – с однонаправленным движением жидкости на смежных тарелках; ж, з – каскадного типа; и – с серповидной сливной перегородкой.

Простейшей из тарелок такого типа является ситчатая (дырчатая) перекрестно-точная тарелка . Полотно ее имеет отверстия диаметром 4 – 12 мм по всей площади, кроме двух противоположных сегментов, где находятся сливные трубы. Эти трубы приподняты над полотном тарелки на высоту 20–40 мм (высоту слива – высоту барботажного слоя жидкости на тарелке), а другим (нижним) своим концом не доходят до полотна тарелки также на 30–50 мм. Для того чтобы поток пара не попадал в сливную трубу, нижний ее конец погружен в слой жидкости высотой не более 50 мм, создаваемый подпорной планкой перед перфорированной частью тарелки. Образующийся при этом гидрозатвор не позволяет парам попадать в сливную трубу. Переливное устройство может быть не только в виде сливных труб, но и в виде сегментной перегородки (IV, рис. 6.9.7), отсекающей от парового пространства сегментный объем, через который жидкость переливается с одной тарелки на другую.

В сливных трубах (или сегменте) уровень жидкости обычно выше уровня на нижележащей тарелке на величину, уравновешивающую гидравлическое сопротивление тарелки. Поэтому расстояние между тарелками не может быть меньше, чем этот столб жидкости в сливном устройстве.

С другой стороны, расстояние между тарелками (шаг тарелок) реально устанавливают с учетом следующих факторов:

· сепарации брызг жидкости из парового потока, выходящего из барботажного слоя, и сокращения за счет этого уноса жидкости на вышележащую тарелку;

· возможности доступа человека в межтарельчатое пространство при ремонте и осмотре тарелок.

Исходя из этих условий нормативными документами установлен шаг тарелок в зависимости от диаметра колонны от 300 до 900 мм.

Ситчатые тарелки (см. рис. 6.9.7, III) используют в колоннах небольшого диаметра (до 2,0-2,5 м). В настоящее время часто используются варианты ситчатых тарелок, полотно которых выполнено из просечно-вытяжного листа. Поток паров, проходя через такое полотно, отклоняется от вертикали и на выходе из барботажного слоя направлен под углом 40-60° к горизонтали. Чтобы интенсифицировать работу тарелки на пути выходящего из барботажного слоя пара, наклонно устанавливают отбойные элементы, изготовленные из того же просечного листа. Ударяясь об эти элементы, парожидкостная смесь сепарируется: жидкость пленкой стекает по элементу вниз, в зону барботажа, а пары через щели проходят в межтарельчатое пространство. Такие тарелки имеют очень малое гидравлическое сопротивление (0,1-0,2 кПа) и обеспечивают достаточно высокую эффективность массообменных процессов.

Рис. 6.9.9 Схема работы полотна тарелки из просечного листа:

1 – корпус колонны; 2 – стенки сливного кармана; 3 – полотно тарелки; 4 – отбойные элементы из просечного листа

Недостаток таких тарелок (как и других вариантов ситчатой тарелки) состоит в том, что при малейшей негоризонтальности или местных выпуклостях или вмятинах полотна тарелки она работает неравномерно по всей площади – в нижележащих точках проваливается жидкость, а в вышележащих – проскакивает пар без барботажа. В результате снижается эффективность тарелки.

Одним из старейших по длительности использования и массовых до сих пор типов тарелок является колпачковая тарелка (см. рис. 6.9.7, IV) с круглыми (капсюльными) колпачками. Ее отличие от предыдущих – наличие у каждого отверстия для прохода паров патрубка 7 определенной высоты, над которыми укреплен колпачок 8 с прорезями для прохода паров по всему нижнему его краю. Такое устройство позволяет ввести поток пара в слой жидкости на тарелке параллельно ее плоскости и раздробленным на множество мелких струй. Кроме того, встречные струи от соседних колпачков, соударяясь, создают завихрения в межколпачковой зоне, в результате чего повышается эффективность тарелки. Действительно, в подавляющем большинстве случаев средний к.п.д. такой тарелки на практике оказывается наибольшим – 0,6-0,8.

Существует большое число модификаций колпачковой тарелки, различающихся устройством или формой колпачков. Три из таких модификаций показаны на рис. 6.9.7 (IV, а; IV, б и IV, в).

Первая из них – это описанная выше тарелка с круглыми колпачками. Такая тарелка универсальна, она нашла применение в различных колоннах – от колонн газоразделения до атмосферных и вакуумных. В последних она используется редко из-за большой металлоемкости тарелки, сложности изготовления и монтажа.

Вторая модификация (IV, б) – это тарелка с литыми или штампованными прямоугольными (туннельными) колпачками, использовавшаяся в 1930-40-е годы в колоннах фирмы "Фостер-Уиллер" (США) для разделения мазута на масляные фракции.

Третья модификация (IV, в) – это желобчатая тарелка, особенностью которой является отсутствие полотна тарелки. Вместо него установлены стальные желоба 2, между которыми образуются щели для прохода паров. Щели накрыты колпачками 8, имеющими по своим краям прорези, длина каждого колпачка соответствует длине щели между желобами. Жидкость движется вдоль желобов к сливу; а пары барботируют через щели колпачков.

На замену колпачковых и желобчатых тарелок в нефтепереработке в 1960-70-е годы пришли два новых типа тарелок – из S-образных элементов (V) иклапанная (VI).

Оригинальность тарелки из S-образных элементов состоит в том, что у нее полотно и колпачки образуют одинаковые элементы (в разрезе – S-образного профиля), но каждый колпачок при этом имеет прорези для прохода паров только с одной стороны, т.е. на единицу площади барботажа тарелки паровой поток вводится в жидкость меньшим (по сравнению сжелобчатой тарелкой) "фронтом" дробленых струй. В отличие от желобчатой тарелки жидкость на этой тарелке движется поперек туннельных колпачков, затапливая их.

Тарелки из S-образных элементов нашли очень большое распространение во всех колоннах, кроме вакуумных (из-за повышенного гидравлического сопротивления), благодаря малой металлоемкости, простоте изготовления (штамповка) и монтажа в сочетании с высокой эффективностью (средний к.п.д. 0,4–0,7).

Невысокая эффективность тарелок из S-образных элементов отчасти связана, с меньшей долей дробленых струй паров на единицу площади барботажа. Поэтому появилась комбинированная тарелка такого типа, у которой по верхней плоскости колпачков с шагом 100-120 мм расположены отверстия прямоугольного сечения, перекрытые клапанами, открывающимися по ходу движения жидкости. Это увеличивает барботажный эффект, снижает гидравлическое сопротивление тарелки и в результате повышает ее к.п.д.

Клапанные тарелки (рис. 6.9.7, VI) по принципу устройства ближе к дырчатым, но в отличие от них позволяют регулировать проходное сечение отверстий для паров. Для этого над каждым отверстием (диаметром от 30 до 50 мм) имеется устройство (клапан), который в зависимости от количества паров под их напором приподнимается (или поворачивается) над отверстием, изменяя таким образом проходное сечение для паров.

Однако существует множество разных конструкций клапанных тарелок, различающихся устройством клапанов.

На рис. 6.9.7, VI показано 4 наиболее типичных устройства клапанов: а, б – клапаны с верхними ограничителями подъема (а – поворотный, б – тарельчатый клапан, поднимающийся вертикально); в, г – клапаны с нижними ограничителями подъема – "ножками" (в – с тремя одинаковыми по высоте ножками; г – с тремя разными по высоте ножками: одной – короткой и двумя – длинными). Клапан типа Glitch (в) поднимается вертикально под напором паров, пока отгибы его ножек не упрутся в полотно тарелки. При этом сечение для прохода паров будет максимальным, а движение паров и жидкости – строго перекрестноточным.

Рис. 6.9.10. Фрагмент секции и схема работы клапанной перекрестно-прямоточной тарелки:

а, б, в – вид секции сбоку при малой (противоток), средней (перекрестный ток) и по­вышенной (прямоток) нагрузке тарелки по парам соответственно; г – вид клапанов сверху; д – вид клапана со стороны короткой ножки; 7 – полотно тарелки; 2 – отверстий для клапанов; 3 – клапаны; 4 – короткие ножки; 5 – длинные ножки (стрелками показаны направления движения жидкости и паров)

Клапан с разными ножками (рис. 6.9.10) вначале под действием потока пара поднимается со стороны короткой ножки (так как центр тяжести такого клапана смещен в сторону длинных ножек) до тех пор, пока она упрется в полотно. В этом положении (рис. 6.9.10, а) поток паров вводится под углом к плоскости тарелки навстречу движущемуся потоку жидкости, т.е. тарелка работает в противоточном режиме. При последующем увеличении количества паров клапан поднимается со стороны длинных ножек (точнее, поворачивается вокруг точки упора – короткой ножки), и когда плоскости клапана и полотна тарелки становятся параллельными (положение "б" на рис. 6.9.10), тарелка, как и в случае с клапаном Glitch, работает в режиме перекрестного тока жидкости и паров. Если количество паров продолжает расти, то клапан поворачивается вокруг точки упора дальше и, в конце концов, упирается в полотно всеми тремя ножками ("в " на рис. 6.9.10), принимая наклонное положение, при котором большее проходное сечение для паров расположено по ходу жидкости, т.е. тарелка работает в этом случае как прямоточная.

Клапанные тарелки сочетают в себе ряд преимуществ (малая металлоемкость, простота сборки, равномерный барботаж в широком интервале нагрузок по пару и жидкости и др.), которые позволили им стать самым распространенным типом тарелки, начиная с 1970-х годов и до настоящего времени. Эти тарелки применяют практически во всех типах колонн нефтепереработки – от газоразделительных до вакуумных.

Струйные тарелки (рис. 6.9.7, VII) представляют собой полотно толщиной 3-5 мм, в котором выштампованы отверстия различной конфигурации с отгибом лепестков под определенным углом. Наиболее типичные варианты таких тарелок показаны на рисунке: а – с отогнутыми лепестками в виде прямоугольников с округленными углами, б – в виде конусных выпуклостей (типа "суфлерской будки") с отверстиями в одну сторону. Барботаж на таких тарелках происходит в режиме перекрестно-прямоточного тока, при котором динамическая энергия потока пара используется для интенсификации движения жидкости по тарелке.

Струйные тарелки рассчитаны на применение в тех случаях, когда нагрузка колонны по потоку паров достаточно высока, поэтому они нашли большее применение в колоннах газоразделения. За счет ввода паров в слой жидкости под углом к плоскости тарелки унос капель жидкости на вышележащую тарелку значительно ниже, чем у перекрестноточных тарелок.

Вихревая тарелка (рис. 6.9.7, VIII) – пример тарелки с интенсивным смешением пара и жидкости на тарелке при пониженном уносе капель с нее. На полотне такой тарелки в окружностях диаметром 100-120 мм выштампованы в радиальных направлениях отверстия с отогнутыми лепестками (VIII, а), а по центру этих окружностей на шпильках установлены отбойные чашечки такого же диаметра (100-120 мм), в дне которых расположено 6–8 отверстий диаметром 5–6 мм. Такие вихревые элементы на полотне располагаются в шахматном порядке с шагом 140-180 мм.

Поток пара, проходя через просечки под углом 40-60° к плоскости тарелки, завихряется в смеси с жидкостью, текущей по полотну тарелки, и эта парожидкостная смесь, ударяясь об отбойные чашечки, сепарируется над ними. Поток паров идет далее в межтарельчатое пространство, а основная часть жидкости выпадает в чашечки и через отверстия в них стекает вновь в зону завихренного барботажного слоя.

Такая тарелка в опытных масштабах показала малое гидравлическое сопротивление, сочетающееся с высокой массообменной эффективностью, что отвечает основным требованиям для тарелок вакуумных колонн.

Для всех рассмотренных типов тарелок факторами, определяющими область их применения и эффективность работы, являются:

· гидравлическое сопротивление;

· равномерность и интенсивность барботажа по площади тарелки;

· диапазон нагрузок по пару и жидкости, в котором тарелка работает нормально (без провала жидкости и интенсивного уноса капель).

mob_info