Теоретические основы теплотехники и гидравлики. Методическая разработка по дисциплине «Основы гидравлики, теплотехники и аэродинамики»: «Основные законы гидравлики» методическая разработка на тему Лекции основы гидравлики теплотехники и аэродинамики

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ХАБАРОВСКОГО КРАЯ

КГБОУ СПО «ХАБАРОВСКИЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

Отделение: заочное

Специальность: «Монтаж и эксплуатация

внутренних сантехнических устройств,

кондиционирования воздуха

и вентиляции».

Группа: д 331 кз

Контрольная работа

По дисциплине: «Гидравлика, теплотехника и аэродинамика»

Выполнил: Литвинов А.А.

1. Объясните понятие «рабочее тело». Какие вещества в качестве его используются, какими параметрами характеризуются

2. Дайте определение критического давления и критической температуры, приведите числовые их значения

3. Что такое влажный воздух? Приведите его характеристики

4. Перечислите виды воздушных струй и признаки их разделения

5. Насадки, их типы, с какой целью их применяют

Использованные источники

1. Объясните понятие «рабочее тело». Какие вещества в качестве его используются, как ими параметрами характеризуются

Термодинамика изучает законы взаимных превращений различных видов энергии, связанных с обменом энергией между телами, чаще всего в форме теплоты и работы. Классическая термодинамика не интересуется поведением и свойствами отдельных молекул, объектом исследования являются макроскопические тела, состоящие из большого числа материальных частиц - атомов, молекул, и т.д.

Под термодинамической системой понимают совокупность тел, которые могут обмениваться между собой и с окружающей средой энергией и массой.

Процессы преобразования энергии в различных тепловых машинах осуществляется с помощью вещества, называемого рабочим телом . В качестве рабочих тел могут выступать вещества в жидком, газообразном и твердом состояниях. Они являются «посредниками» в процессе обмена энергией между системой и окружающей средой. Так, например, нагреваемый газ расширяется и совершает механическую работу. В результате происходит преобразование тепловой энергии в механическую.

Рабочее тело характеризуют различные параметры состояния - давление, объем, температура, внутренняя энергия, энтальпия, т.д. В качестве основных параметров состояния принимают: удельный объём, абсолютное давление и абсолютную температуру.

Удельным объёмом называется объём единицы массы вещества:

Масса единицы объёма, т.е. величина обратная удельному объему, называется плотностью:

Очевидно соотношение: .

Абсолютным давлением называется давление газа, обусловленное совокупностью ударов беспорядочно движущихся молекул о стенки сосуда, в котором заключен газ, и представляет собой нормальную силу F, действующую на единицу площади А поверхности стенки:

Кг/м 2 = Па.

В системе СИ давление измеряется в паскалях (Па).

Для измерения давления используют приборы: атмосферного - барометры, выше атмосферного - манометры, ниже атмосферного - вакуумметры. Барометр - единственный прибор, измеряющий абсолютное давление атмосферы (р атм). Давление, которое регистрирует манометр или вакуумметр, называют избыточным (р изб). Оно не является параметром состояния рабочего тела, а лишь показывает на сколько давление в сосуде выше или ниже атмосферного. Действительное давление (р) в сосуде (абсолютное) является параметром состояния и равно сумме:

Давление на шкале вакуумметра обычно указывают со знаком минус.

Величина, характеризующая степень нагретости тела, называется температурой.

Степень нагретости тел связана со среднеквадратичной скоростью движения молекул выражением:

где m = масса молекулы,

k - постоянная Больцмана,

Т - абсолютная температура.

Абсолютная температура измеряется в кельвинах (К) и всегда положительна. Абсолютный нуль - это температура, при которой прекращается тепловое движение молекул, т.е. начало отсчета температуры по шкале Кельвина. Температура по шкале Кельвина связана с температурой по шкале Цельсия соотношением:

В шкалах Кельвина и Цельсия различно лишь начало отсчета, а линейные размеры, соответствующие одному градусу, одинаковы. Поэтому разность температур в 1 о С равна 1 К.

В технике для измерения температур используют различные свойства тел: расширение при нагревании в жидкостных термометрах, изменение давления при постоянном объеме в газовых термометрах, изменение электрического сопротивления проводника при нагревании, изменение термо ЭДС в цепи термопары и т. д.

2 . Дайте определение критического давления и крит ической температуры, приведите числовые их значения

Критическое давление -- давление вещества (или смеси веществ) в его критическом состоянии. При давлении ниже критического давления система может распадаться на две равновесные фазы -- жидкость и пар. При критическом давлении теряется физическое различие между жидкостью и паром, вещество переходит в однофазное состояние. Поэтому критическое давление можно определить ещё как предельное (наивысшее) давление насыщенного пара в условиях сосуществования жидкой фазы и пара. Критическое давление представляет собой физико-химическую константу вещества. Критическое состояние смесей отличается зависимостью критического давления от состава и, таким образом, осуществляется не в единственной критической точке, а на кривой, все точки которой характеризуются критическими значениями давления, температуры и концентрации.

Критическая температура - это температура вещества в его критическом состоянии. Для индивидуальных веществ критическая температура определяется как температура, при которой исчезают различия в физических свойствах между жидкостью и паром, находящимися в равновесии. При критической температуре плотности насыщенного пара и жидкости становятся одинаковыми, граница между ними исчезает и теплота парообразования обращается в нуль. Критическая температура -- одна из неизменяющихся характеристик (констант) вещества. Значения критических температур и давления некоторых веществ приведены таблице:

3. Что такое влажный воздух? Приведите его характеристики

В технике часто используются смеси газов с парами, которые при определенных условиях легко конденсируются. Наиболее характерным примером парогазовых смесей является атмосферный воздух, в котором всегда находятся пары воды. Смесь сухого воздуха с водяным паром называется влажным воздухом . Знание свойств влажного воздуха имеет большое значение при проектировании и эксплуатации сушильных и вентиляционно-увлажнительных установок.

При небольших давлениях можно рассматривать сухой воздух и водяной пар, который в нем содержится, как идеальные газы. В этом случае для них справедливы закономерности, сформулированные для смеси идеальных газов.

Согласно закона Дальтона, абсолютное давление влажного воздуха Р бар равняется, как правило, атмосферному давлению, - сумма парциальных давлений сухого воздуха Р с.в и водяного пара Р п

Р = Р с.в + Р п

Водяной пар находится во влажном воздухе в перегретом состоянии. В этом случае парциальное давление водяного пара ниже давления насыщения Р н влажного воздуха при данной температуре. Смесь сухого воздуха и перегретого водяного пара называется влажным ненасыщенным воздухом. Если снижать температуру ненасыщенного влажного воздуха при постоянном давлении, то можно достичь состояния, когда Р п = Р н, т.е. давление и температура водяного пара соответствуют состоянию насыщения. Смесь сухого воздуха и насыщенного водяного пара называется насыщенным влажным воздухом . Температура, до которой необходимо охладить влажный воздух при постоянном давлении, чтобы он стал насыщенным, называется температурой точки росы t p .

Следовательно, температура точки росы в каком-либо состоянии влажного воздуха численно равна температуре насыщения, соответствующей данному парциальному давлению пара Р п.

Для характеристики паровоздушной смеси необходимо знать ее состав. О составе влажного воздуха судят по его влажности и влагосодержанию. Различают абсолютную и относительную влажность.

Абсолютной влажностью воздуха называется количество водяного пара, приходящегося на 1 м 3 влажного воздуха, т.е.

Учитывая, что объем влажного воздуха V в.в равен объему пара V п, абсолютная влажность воздуха численно равна плотности содержащегося в нем водяного пара с п.

Отношение абсолютной влажности с п и максимально возможной абсолютной влажности с н, соответствующей t п, характеризует степень насыщения и называется относительной влажностью воздуха .

Значения ц могут изменяться в пределах от ц = 0 (сухой воздух) до ц = 100 % (влажный насыщенный воздух).

Учитывая, что пар, находящийся в воздухе, рассматривается как идеальный газ, (Р п v п = Р н v н), т.е.

Парциальное давление в состоянии насыщения Р н определяют из таблиц насыщенного пара по температуре t п = t в.в. Парциальное давление Р п находят также из таблиц по температуре точки росы.

Так как в процессах, происходящих с влажным воздухом (подогрев, охлаждение), количество сухого воздуха m с.в не изменяется, то целесообразно все удельные величины относить к 1 кг сухого воздуха. Масса водяного пара, приходящаяся на 1 кг сухого воздуха, называется влагосодержанием.

При принятом допущении об идеальности водяного пара и воздуха можно записать:

Р п V п = m п R п T п; Р в V в = m в R в T в;

Считая, что V п = V в и T п = T в, получим

Если учесть, что Р бар = Р в + Р п и Р п = цР н, то

Плотность влажного воздуха с в.в можно определить как сумму плотности пара с п и плотности сухого воздуха с в при их парциальных давлениях. Очевидно, что

Энтальпию влажного воздуха относят к 1 кг сухого воздуха или к (1+d) кг влажного воздуха и определяют как сумму энтальпий 1 кг сухого воздуха и d кг водяного пара, т.е.

I = i в + i п d = c рв t + i п d.

Для температуры и давлений, применяемых в сушильной технике, приблизительно можно считать c рв = 1,0 кдж /(кг . град), а для водяного пара i п = (r + c рm t) = (2500 + 1,9 t) кдж/кг.

I-d-диаграмма влажного воздуха. Определение параметров и исследование процессов влажного воздуха значительно упрощается и становится наглядным, если использовать I-d-диаграмму влажного воздуха, предложенную в 1918 г. Л.К. Рамзиным. На этой диаграмме по оси ординат откладывают значения энтальпии влажного воздуха I кдж/кг сух. возд., а по оси абсцисс - влагосодержание d г/кг сух. возд.

Из удобства (увеличения рабочей площади диаграммы) ось абсцисс направлена под углом 135 0 к оси ординат. Поэтому линии J=const оказываются наклоненными под углом 45 о к горизонту. Для сокращения размеров диаграмм значения d с оси абсцисс сносят на горизонтальную условную ось 0 - 0ґ.

На диаграмму наносят сетку изотерм по уравнению. Эти изотермы представляют собой прямые с небольшим наклоном вверх. На каждой из них находят точки с одинаковыми значениями ц, а соединив их, получают сетку кривых ц = const. Кривая ц = 100 % изображает состояние влажного насыщенного воздуха и является пограничной кривой. Эта кривая разделяет область ненасыщенного влажного воздуха (сверху) и область тумана (снизу), в которой влага частично находится в капельном состоянии.

Диаграмма строится для давления влажного воздуха Р бар = 745 мм рт.ст., что соответствует среднему годовому барометрическому давлению.

Линии ц = const поднимаются до изотермы 99,4 0 С (температура насыщения при Р = 745 мм рт.ст.), после чего почти вертикально поднимаются вверх, т.к. при t > t н величина ц зависит только от d.

На диаграмме нанесены также линии (показаны пунктирами) постоянной температуры «мокрого» термометра , под которой понимается температура воды, если поверхность ее обдувается потоком ненасыщенного влажного воздуха. Если поверхность воды обдувается потоком насыщенного воздуха (ц = 100 %), то температура воды будет совпадать с температурой воздуха. Поэтому на I-d-диаграмме изотермы влажного воздуха («сухого» термометра), соответствующие одному и тому же значению температур, пересекаются на линии ц = 100 %.

В нижней части диаграммы построена линия парциального давления

Состояние влажного воздуха на I-d-диаграмме (точка А) можно определить по каким-либо двум параметрам (ц и t или Р п и t), после чего находят I и d. Для этого состояния можно найти и температуру точки росы, для чего из точки А проводят вертикаль (d = const) до пересечения с ц = 100 %; т.е. изотерма, проходящая через эту точку, будет соответствовать температуре точки росы t р. термодинамика энергия энтальпия

На I-d-диаграмме показаны основные процессы влажного воздуха. Так, учитывая, что в процессе подогрева влажного воздуха (например, в калорифере сушильной установки) количество водяного пара не изменяется, процесс подогрева будет изображаться вертикальной прямой d = const (А - В). При этом температура воздуха увеличивается от t А до t В, а относительная влажность уменьшается от ц А до ц В.

Разница ординат I А - I В дает расход тепла на подогрев (1+d) кг влажного воздуха. Теоретический процесс увлажнения воздуха в сушильной камере происходит по кривой I = const, т.к. часть энтальпии, затраченной на испарение влаги, возвращается в виде энтальпии водяного пара (если пренебречь величиной энтальпии, которую имела жидкость до испарения). На I-d-диаграмме этот процесс изображается отрезком ВД. Разница d Д - d В определяет количество влаги, испаренной 1 кг сухого воздуха.

4. Перечислите виды воздушных струй и признаки их разделения

Вентилирование помещений любого назначения представляет собой процесс переноса определенных объемов воздуха, вытекающего из приточных отверстий. Скорость и направление истечения воздуха из отверстий, форма и количество отверстий, их расположение, а также температура воздуха в струе определяют характер воздушных потоков в помещении. Приточные струи взаимодействуют между собой, с тепловыми струями, возникающими около нагретых поверхностей, и с потоками воздуха, образующимися вблизи вытяжных отверстий.

Строительные конструкции помещения (колонны, стены, пол, потолок) и технологическое оборудование при на бегании на них потоков воздуха оказывают существенное влияние на скорость и направление их дальнейшего распространения. Кроме того, в производственных помещениях на скорость и направление движения воздуха большое влияние могут оказывать действие различных механизмов технологического оборудования, а также струи, истекающие из отверстий или не плотностей оборудования, находящегося под избыточным давлением.

Воздушные потоки -- струи, образующиеся в помещении, -- переносят поступающие в воздух вредные выделения (конвективное тепло, пары, газы и пыль) и формируют в объеме воздуха помещения поля скоростей, температур и концентраций.

Струей называют поток жидкости или газа с конечными поперечными размерами.

В технике вентиляции приходится иметь дело со струями воздуха, истекающего в помещение, также заполненное воздухом. Такие струи называют затопленными.

В зависимости от гидродинамического режима струи могут быть ламинарными и турбулентными. Приточные вентиляционные струи всегда турбулентны.

Различают струи изотермические и неизотермические. Струю называют изотермической, если температура во всем объеме ее одинакова и равна температуре окружающего воздуха. Для вентилирования помещений в подавляющем большинстве случаев применяются неизотермические струи.

Струю называют свободной, если она истекает в достаточно большое пространство и не имеет никаких помех для своего свободного развития. Если на развитие струи ограждающие конструкции помещения оказывают какое-либо воздействие, то такую струю называют несвободной, или стесненной. Вентиляционные приточные струи развиваются в помещениях ограниченных размеров и могут испытывать влияние ограждающих конструкций. При определенных условиях влияние ограждений на развитие приточных струй можно не учитывать и считать такие струи свободными.

Струя, истекающая из отверстия, расположенного вблизи какой- либо плоскости ограждения помещения (например, потолка), параллельно этой плоскости, будет настилаться на нее. Такую струю называют настилающейся.

Все приточные струи можно разделить на две группы: 1--с параллельными векторами скоростей истечения; 2 -- с векторами скоростей истечения, составляющими между собой некоторый угол.

Геометрическая форма приточного насадка определяет форму и закономерности развития истекающей из него струи. По форме различают струи конические, плоские и веерные или кольцевые.

Компактные струи образуются при истечении воздуха из круглых, квадратных и прямоугольных отверстий. Струя, истекающая из круглого отверстия, остается осесимметричной по всей длине своего развития (круглая струя). При истечении из квадратного или прямоугольного отверстия струя в начале не будет осесимметричной, но на некотором расстоянии от насадка преобразуется в осесимметричную. При истечении воздуха из круглого отверстия с диффузорами для принудительного расширения образуется также компактная струя, которая будет осесимметрична по всей длине; такую струю называют конической.

Плоские струи образуются при истечении воздуха из щелевых отверстий бесконечной длины. В реальных условиях плоской считают струю, истекающую из длинного щелевидного насадка с соотношением сторон 1о:2В0^20. Струя, истекающая из щели с соизмеримым соотношением сторон, не остается плоской, а постепенно трансформируется сначала в эллипсовидную, а потом в круглую.

Если струя истекает из кольцевой щели под углом к оси подводящего воздух канала ре 180°, то ее называют кольцевой, при р около 135° -- полой конической, при р=90° -- полной веерной. У полных веерных струй угол распределения воздуха в пространство составляет 360°; при меньшем угле распределения струя будет неполной веерной.

Независимо от формы все струи, у которых при истечении нет принудительного изменения их направления, на некотором расстоянии от насадка расширяются; угол бокового расширения а=12°25". Угол расширения конической струи при истечении почти совпадает с углом направляющих диффузоров, а затем постепенно уменьшается и на расстоянии 10 d0 становится равным углу естественного бокового расширения (12°25").

Изучение струй проводилось многими отечественными и зарубежными исследователями применительно к различным областям техники. Наиболее глубокое и полное исследование струй принадлежит Г. Н. Абрамовичу, а применительно к задачам вентиляционной техники широкие исследования струй проведены И. А. Шепелев.

5. Насадки, их т ипы, с какой целью их применяют

Насадкой называется отрезок трубы, длина которого в несколько раз больше внутреннего диаметра. Рассмотрим случай, когда к отверстию в стенке резервуара присоединен насадок диаметром d, равным диаметру отверстия.

На рис. 2 показаны наиболее распространенные виды насадок, применяемые на практике.

Рис.2 виды насадок: а - цилиндрический внешний; б - цилиндрический внутренний; в - конический расходящийся; г - конический сходящийся; д - коноидально-расходящийся; е - коноидальный.

Цилиндрические насадки встречаются в виде деталей гидравлических систем машин и сооружений. Конические сходящиеся и коноидальные насадки применяют для увеличения скорости и дальности полета струи воды (пожарные брандспойты, стволы гидромониторов, форсунки, сопла и др.).

Конические расходящиеся насадки применяют для уменьшения скорости и увеличения расхода жидкости и давления на выходе во всасывающих трубах турбин и др. В эжекторах и инжекторах также имеются конические насадки, как основной рабочий орган. Водопропускные трубы под насыпями дорог (с точки зрения гидравлики) также представляют собой насадки.

Рассмотрим истечение через внецилиндрический насадок (рис. 3).

Струя жидкости при входе в насадок сжимается, а потом расширяется и заполняет все сечение. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, а коэффициент расхода

Составим уравнение Д. Бернулли для сечений 1-1 и 2-2

где - потери напора.

Для истечения из открытого резервуара в атмосферу аналогично истечению через отверстие уравнение Д. Бернулли приводится к виду

Потери напора в насадке складываются из потерь па входе и на расширение сжатой струи внутри насадка. (Незначительными потерями в резервуаре и потерями по длине насадка ввиду их малости можно пренебречь.) Итак,

По уравнению неразрывности можем записать:

Подставляя значение в уравнение (2), имеем

Полученное значение потерь напора подставим в уравнение (144), тогда

Отсюда скорость истечения

Обозначая

получим для скорости уравнение

Определим расход жидкости

Но для насадка и

где - коэффициент расхода насадка; - площадь живого сечения насадка.

Таким образом, уравнения для определения скорости и расхода жидкости через насадок имеют тот же вид, что и для отверстия, но другие значения коэффициентов. Для коэффициента сжатия струи (при больших значениях Re и) можно приближенно принять, и тогда по формулам (5) и (6) получается. Фактически происходят и потери по длине, поэтому для истечения воды в обычных условиях можно принимать.

Сравнивая коэффициенты расхода и скорости для насадка и отверстия в тонкой стенке, устанавливаем, что насадок увеличивает расход и уменьшает скорость истечения.

Характерной особенностью насадка является то, что давление в сжатом сечении меньше атмосферного. Это положение доказывается уравнением Бернулли, составленным для сжатого и выходного сечений.

Во внутренних цилиндрических насадках сжатие струи на входе больше, чем у внешних, и поэтому значения коэффициентов расхода и скорости меньше. Опытами найдены коэффициенты для воды.

В наружных конических сходящихся насадках сжатие и расширение струи на входе меньше, чем в наружных цилиндрических, но появляется внешнее сжатие на выходе из насадки. Поэтому коэффициенты, и зависят от угла конусности. С увеличением угла конусности до 13° коэффициент расхода растет, а с дальнейшим увеличением угла уменьшается. термодинамика энергия энтальпия

Конические сходящиеся насадки применяют в тех случаях, когда нужно получить большую выходную скорость струи, дальность полета и силу удара струи (гидромониторы, пожарные стволы и т. п.).

В конических расходящихся насадках внутреннее расширение струи после сжатия больше, чем в конических сходящихся и цилиндрических, поэтому потери напора здесь возрастают и коэффициент скорости уменьшается. Внешнего сжатия при выходе нет.

Коэффициенты и зависят от угла конусности. Так, при угле конусности значения коэффициентов можно принимать равными; при (предельный угол) . При струя вытекает, не касаясь стенок насадка, т. е. как из отверстия без насадка.

Значении коэффициентов , и для насадок

Конические расходящиеся насадки применяют в тех случаях, когда необходимо уменьшить скорость истечения, например, насадки для подачи смазочных масел и т. п. В конических расходящихся насадках в месте сжатия струи создается большой вакуум, поэтому их еще применяют там, где требуется создать большой эффект всасывания (эжекторы, инжекторы и т. п.).

Коноидальные насадки имеют очертания формы струи, вытекающей через отверстие в тонкой стенке. Для этих насадок значение коэффициентов составляет: .

Их применяют в пожарных брандспойтах, но редко, так как изготовление их очень сложное.

Использованные источники

1. О.Н, Брюханов, В.И. Кробко, А.Т. Мелик-Аракелян « Основы гидравлики, теплотехники и аэродинамики», Издательство: ИНФРА-М, 2010 г.

2. Брюховецкий О.С. «Основы гидравлики», - М.:Недра,1991 г. - 156с.

3. Лобачев П.В. «Насосы и насосные станции»,- М Строй-издат, 1990, -320 с.

4. Ухин Б.В. Гидравлика. - М.: ИД ФОРУМ 2008.

5. А.В. Теплов. Основы гидравлики. - М.: Высшая школа, 1990

Размещено на Allbest.ru

...

Подобные документы

    Схема опытной установки и описание принципа её действия. Порядок выполнения опыта и составление диаграммы влажного воздуха. Расчёт плотности воздуха на выходе из калорифера, массового расхода воздуха, проходящего через установку, расхода сухого воздуха.

    контрольная работа , добавлен 23.01.2014

    Статистика атмосферы и простейшее приложение. Уравнение состояние сухого воздуха и его использования для расчёта плотности воздуха. Виртуальная температура и запись уравнения влажного воздуха в компактной универсальной форме. Основные const термодинамики.

    краткое изложение , добавлен 19.11.2010

    Понятие и виды сушки, особенности ее статики и кинетики. Определение плотности, количества и энтальпии водяного пара. Цели и физико-химические способы осушки газов. Физические основы и методы кристаллизации, расчет ее материального и теплового баланса.

    презентация , добавлен 29.09.2013

    Определение влагосодержания и энтальпии воздуха, поступающего в калорифер и выходящего из сушильной камеры, температуры воздуха, поступающего в сушильную камеру. Определение удельных расходов воздуха и теплоты, требуемых для испарения 1 кг влаги.

    контрольная работа , добавлен 17.01.2015

    Расчёт состояния и параметров пара в начале и конце процесса, коэффициента теплоотдачи у поверхности панели. Расчёт газовой постоянной воздуха, молекулярной массы и количества теплоты. H-d-диаграмма влажного воздуха. Понятие конвективного теплообмена.

    контрольная работа , добавлен 02.03.2014

    Понятие абсолютной, относительной влажности воздуха и влагоемкости. Давление водяного пара атмосферы при различных температурах. Краткая характеристика основных методов оценки влажности и температуры воздуха. Аспирационный и простой психрометры.

    лабораторная работа , добавлен 19.11.2011

    Газовая постоянная воздуха. Изотермическое сжатие и адиабатное расширение воздуха. Измерение теплоемкости твердых тел. Измерение теплопроводности твердых тел. Теплопроводность однослойных и многослойных стенок. Соотношения между единицами давления.

    методичка , добавлен 22.11.2012

    Определение реакции баллона на возросшее давление. Анализ газовой постоянной и плотности смеси, состоящей из водорода и окиси углерода. Аналитическое выражение законов термодинамики. Расчет расхода энергии в компрессорах при политропном сжатии воздуха.

    контрольная работа , добавлен 04.03.2013

    Выбор температуры уходящих газов и коэффициента избытка воздуха. Расчет объемов воздуха и продуктов сгорания, а также энтальпии воздуха. Тепловой баланс теплового котла. Расчет теплообменов в топке, в газоходе парового котла. Тепловой расчет экономайзера.

    курсовая работа , добавлен 21.10.2014

    Определение расчетных параметров наружного и внутреннего воздуха для теплого и холодного периодов. Теплопоступления от искусственного освещения и солнечной радиации. Выбор схемы распределения воздуха в кондиционируемом помещении, подбор калориферов.

Контрольная работа

Основы гидравлики и теплотехники

давление гидростатический насос

Дано: Δt 0 =7 0 C, b t = 10 -4 °С -1 ; b w = 5´10 -10 Па -1

Определить Δр

Коэффициенты объемного сжатия b w и температурного расширения b t определяются по формулам:

где D W - изменение начального объема W н , соответствующее изменению давления на величину D p или температуры на величину D t ; W н - начальный объем, занимаемый жидкостью, до ее нагрева; W н1 - начальный объем, занимаемый жидкостью при атмосферном давлении после ее нагрева.

Из данных формул:

Находим искомую величину D p при изменении температуры на заданную величину D t °С:



Задача 2

Дано: r в = 1000 кг/м 3 ; g = 9,81 м/с 2 , Н=4 м, h=3,3 м, b=1,3 м, r кл =2,15∙10 3 кг/м 3

Требуется определить:

1. Силу избыточного гидростатического давления на 1 погонный метр длины стенки, предварительно построив эпюру гидростатического давления.

2. Положение центра давления.

3. Запас устойчивости K подпорной стенки на опрокидывание.

Ширину стенки b 3 при запасе устойчивости K = 3.

Решение

1) Для построения эпюры гидростатического давления на стенку следует в точках А и В определить избыточное давление по формуле:

, (1)

где- плотность воды,

h - глубина погружения данной точки под уровень воды, м.

При построении эпюры гидростатического давления следует помнить, что давление всегда направленно перпендикулярно площадке, на которую оно действует.

В точке А h A =0, следовательно, по формуле (1) избыточное давление равно нулю р А =0

В точке В h В =h, следовательно, по формуле (1) избыточное давление равно нулю р B =1000∙9,81∙3,3=32373 Па=32,4 кПа

В масштабе в 1 см = 10 кПа строим эпюру гидростатического давления - треугольник.

Сила избыточного гидростатического давления на плоскую стенку вычисляется по формуле:

, (3)

где p ц.т . - давление в центре тяжести смоченной поверхности, Па (Н/м 2);

w- площадь смоченной поверхности, м 2 , w=h∙1 п.м.

По формуле (1):

,

где h цт - расстояние от свободной поверхности жидкости до центра тяжести.

h цт = 3,3/2=1,65 м


Точка приложения суммарной силы избыточного гидростатического давления называется центром давления. Положение центра давления определяется по формуле:

, (4)

где L ц.д . - расстояние в плоской стенке от центра давления до свободного уровня жидкости, м; L ц.т . - расстояние в плоской стенке от центра тяжести стенки до свободного уровня жидкости, м; w - площадь смоченной поверхности, м; J - момент инерции смоченной плоской площадки относительно горизонтальной оси, проходящей через центр тяжести.

Для плоской прямоугольной фигуры:

Пог. м

Подставим в (4):


Найдем опрокидывающий момент .

Мопр=53,41∙(3,3-2,2)=58,75 кНм

Удерживающий момент относительно точки О равен:

где G - вес подпорной стенки, кН.

Вес стенки равен G=mg=ρклVg=ρкл b H 1 пм g

Где ρкл - плотность кладки.

Запас устойчивости на опрокидывание равен отношению удерживающего момента сил относительно точки О к опрокидывающему моменту:

М=71,29/58,75=1,21, поскольку значение K получилось меньше трех, то определим ширину стенки b 3 , которая бы удовлетворяла запасу устойчивости K = 3.

М уд1 =3Мопр=176,25 кНм

Полученное значение округлить до 5 сантиметров в большую сторону, получим ширину стенки .


Задача 3 (В0)

Дано: D=1,7 м, ρ=1000 кг/м 3 , Н=2 м

Определить величину и направление силы гидростатического давления воды на 1 метр ширины вальцового затвора


Суммарная сила избыточного гидростатического давления воды на цилиндрическую поверхность определяется по формуле:

где Р х - горизонтальная составляющая силы избыточного гидростатического давления, Н,

Р у - вертикальная составляющая силы избыточного гидростатического давления, Н.

,(6)

Где h цт - расстояние по вертикали от центра тяжести вертикальной цилиндрической поверхности до уровня воды, м,

Площадь вертикальной проекции цилиндрической поверхности, м 2 .


Вертикальная составляющая силы избыточного гидростатического давления определяется по формуле:

Где W - объем тела давления, м 3 . Вертикальная составляющая силы давления равна весу жидкости в объеме тела давления. Для нахождения тела давления цилиндрической поверхности разделим ее на 2 части: АВ и ВС, причем тело давления для поверхности АВ будет положительным, для ВС - отрицательным. Результирующий объем тела давления на всю цилиндрическую поверхность АВС и его знак находятся путем алгебраического суммирования тел давления на криволинейные поверхности АВ и ВС. Тело давления на рис.3. заштриховано.



По формуле (5) равнодействующая силы давления:

Сила избыточного гидростатического давления направлена по радиусу к центру цилиндрической поверхности под углом φ к вертикали:


Положение центра давления определяется по формуле:

,


Задача 4 (В0)

Дано: рис.5, k э = 0,1 мм, Q=3,5 л/с, d 1 =75 мм=0,075 м, d 2 =50 мм=0,05 м, d 3 =40 мм=0,04 м, l 1 =6 м, l 2 =2 м, l 1 =1 м, t=30 0 C

Требуется:

1. Определить скорости движения воды и потери напора (по длине и местные) на каждом участке трубопровода.

2. Установить величину напора Н в резервуаре.

Построить напорную и пьезометрическую линии, с соблюдением масштаба.

Решение


Составим уравнение Д. Бернулли в общем виде для сечения 0-0 (на свободной поверхности жидкости в резервуаре) и сечения 3-3 (на выходе потока из трубы), за плоскость сравнения принимаем ось трубопровода:

где z 0 , z 3 - расстояние от центров тяжести сечений 0 и 3 до произвольно выбранной горизонтальной плоскости сравнения; z 0 -z 3 =H,

p 0 , p 3 - давление в центрах тяжести живых сечений 0 и 3, р 0 =р 3 =р ат;

v 0 , v 3 - средняя скорость движения жидкости в живых сечениях 0 и 3;

a 0 , a 3 - коэффициент кинетической энергии (коэффициент Кориолиса) - поправочный коэффициент, представляющий собой безразмерную величину, равную отношению истинной кинетической энергии потока в рассматриваемом сечении к кинетической энергии, подсчитанной по средней скорости.

Скоростным напором в сечении 0-0 пренебрегаем

Для ламинарного режима движения a = 2, а для турбулентного a можно принять равным 1;

h 0-3 - потери напора на преодоление сил сопротивления при движении потока от сечения 1 до сечения 2; r = 1000 кг/м 3 ; g = 9,81 м/с 2 .

Тогда уравнение примет вид:

(7)

Определим скорости движения воды на каждом участке.

Скорость


Определим режим движения жидкости на каждом участке.

Число Рейнольдса:

где ν - коэффициент кинематической вязкости, для воды при t=30 0 C по приложению 1 n=0,009 cм 2 /c=0,009∙10 -4 м 2 /c

Режим течения жидкости на всех участках турбулентный, потому коэффициент гидравлического трения определяем по формуле Альтшуля:

, (12)

где k э - эквивалентная шероховатость стенки трубы.

Потери напора равны сумме потерь по длине и местных потерь:

h w =h l +h м

Потери напора по длине определяем по формуле Дарси:


1. Потери напора в местных сопротивлениях вычисляют по формуле Вейсбаха:

где V - средняя скорость за данным местным сопротивлением; z - безразмерный коэффициент местного сопротивления определяется по справочнику.

Потери по длине:


, по приложению 2 ξ вс1 =0,324

, по приложению 2 ξ вс2 =0,242

При вычислении потери напора на вход в трубу коэффициент местного сопротивления z вх равен 0,5.

Скоростной напор


Подставим в (7):

Н=0,40+0,06+0,16+0,26+0,05+0,10+0,02=1,05 м

Строится напорная линия. Напорная линия показывает, как изменяется полный напор: (полная удельная энергия) по длине потока. Значения Н откладываются вертикально вверх от осевой линии трубопровода.

При построении напорной линии нужно вертикалями выделить расчетные участки. Таких участков в данной задаче будет три. Далее в произвольно выбранном вертикальном масштабе откладывается от осевой линии величина найденного уровня жидкости в резервуаре Н . Проводя по этому уровню горизонтальную линию, получаем линию исходного (первоначального) напора. От уровня жидкости в резервуаре по вертикали, отвечающей сечению при входе жидкости в трубопровод, откладывается в масштабе вниз отрезок, равный потере напора при входе жидкости в трубу (потеря напора в местном сопротивлении h вх ). На участке L 1 имеет место потеря напора по длине трубопровода h L 1 . Для получения точки, принадлежащей напорной линии в конце участка L 1 , нужно от линии полного напора после входа жидкости в трубу отложить по вертикали в конце участка L 1 вниз в масштабе отрезок, соответствующий потере напора на этом участке h L 1 . Затем от точки полного напора в конце участка L 1 откладывается в масштабе отрезок, соответствующий потере напора в местном сопротивлении (внезапное расширение h вр ), и так до конца трубопровода. Соединяя точки полного напора в каждом сечении, получим напорную линию. Пьезометрическая линия показывает, как изменяется пьезометрический напор (удельная потенциальная энергия), по длине потока. Удельная потенциальная энергия меньше полной удельной энергии на величину удельной кинетической энергии a v 2 / (2 g ). Поэтому, чтобы построить пьезометрическую линию, нужно вычислить на каждом участке величину a v 2 / (2 g ) в начале и в конце каждого участка и соединяя полученные точки, строим пьезометрическую линию.


Верхняя линия (синяя) - напорная

Нижняя (красная) - пьезометрическая

Горизонтальный масштаб: в 1 см - 1,25 м

Вертикальный масштаб: в 1 см - 0,2 м

Задача 5 (в0)

Дано: d=200 мм=0,2 м, L=200 м, L вс =20 м, d вс =200 мм=0,02 м, Q=47,1 л/с=0,0471 м 3 /с, Н=2,2 м

Требуется определить:

1. Давление при входе в насос (показание вакуумметра в сечении 2 -2), выраженное в метрах водяного столба.

Как изменится величина вакуума в этом сечении, если воду в колодец подавать по двум трубам одинакового диаметра d ?

Решение


Для определения искомой величины вакуума при входе в насос (сечение 2-2) -необходимо знать высоту расположения оси насоса над уровнем воды в водоприемном колодце. Эта высота складывается из суммы высот H + z . Поскольку величина Н задана, необходимо определить перепад уровней воды в реке и водоприемном колодце z .

Величина z при заданных длине и диаметре самотечной линии зависит от расхода Q и определяется из уравнения Бернулли, составленного для сечений О-О и 1-1 (рис. 9):

. (14)

Принимая за горизонтальную плоскость сравнения сечение 1-1 и считая v 0 = 0 и v 1 = 0, а также учитывая, что давления в сечениях О-О и 1-1 равны атмосферному (р о = p a т и р 1 = p a т ), имеем расчетный вид уравнения:

Таким образом перепад уровней воды в бассейне и водоприемном колодце равен сумме потерь напора при движении воды по самотечной линии. Она состоит из потерь напора по длине и в местных сопротивлениях


Скорость в самотечном трубопроводе:


К местным сопротивлениям относятся вход в трубопровод и выход из него. При определении потерь напора в этих сопротивлениях коэффициент местного сопротивления входа следует принять z вх = 3, а выхода z вых = 1.

Принимаем кинематический коэффициент вязкости n = 0,01х10 -4 м 2 /с, тогда по формуле (8) число Рейнольдса:

Принимаем эквивалентную шероховатость стенок труб k э = 1 мм

Тогда из (15) перепад давлений z=0,46+3,33=3,79 м

Искомая величина вакуума при входе в насос определяется из уравнения Бернулли, составленного для сечений 1-1 и 2 -2, при этом за горизонтальную плоскость сравнения берем сечение 1 -1:


Потери напора равны сумме потерь по длине и местных потерь.

Коэффициент местного сопротивления приемного клапана с сеткой по прил. 3 равен z сет =5,2, колена z кол = 0,2.

Потери по длине:

Тогда h 1-2 =0,62+0,33=0,95 м

Вакуум на входе в насос:

При движении воды по двум самотечным трубам одинакового диаметра новое значение вакуума в сечении 2-2 определяется из расчета прохождения по одной трубе расхода Q 1 = Q / 2=0,02355 м 3 /с

Скорость в самотечном трубопроводе:

Определим местные потери по формуле (13)

Число Рейнольдса:

Коэффициент гидравлического трения по формуле (12):

Потерю напора по длине найдем по формуле Дарси:

Тогда из (15) перепад давлений z=0,12+0,86=0,98 м

Вакуум на входе в насос:

Вакуум уменьшится в 63,3:12,6=5 раз.

Задача 6 (в0)

Дано: d 1 =4,5 см, d 2 =3,5 см, Н 1 =1,5 м, h 1 =1 м, h 2 =0,5 м

Требуется определить:

Расход Q ,

Перепад уровней воды в отсеках h .

а) свободное истечение, б) истечение под уровень

Решение

Расход жидкости при истечении из отверстий и насадок определяется по формуле:

, (16)

где w - площадь отверстия, w=πd 2 /4, Н - действующий напор над центром отверстия: m - коэффициент расхода (при истечении из отверстия можно принять m о = 0,62, из насадки - m н = 0,82).

Предположим, что отверстие не затоплено. Тогда по формуле (16) находим расход:

Учитывая равенство расходов из отверстия и насадки, определяем

. (20)

(h 2 + H 2)=0,5+2,35=2,85м³ h 1 =1м, следовательно, отверстие затоплено, выполним пересчет, считая истечение из отверстия затопленным. В этом случае:


Из этого равенства находим Н 2 .


Проверяем условие затопляемости

(h 2 + H 2)=0,5+1,22=1,72м > h 1 =0,5 м и определяем искомый расход

.

Находим искомое значение

h = (h 1 + H 1) - (h 2 + H 2)=(1+1,5)-(0,5+1,22)=0,78 м

Выполняем проверку

.

Задача 7 (в0)

Дано: Q=60 л/с=0,06 м 3 /с, L=0,75 км=750 м, z=3 м, Н св =12 м, трубы чугунные, hм=0,1h l

Найти d, Нб, Нсв \

Диаметр трубопровода назначается по таблице предельных расходов, представленной в прил. 4.

Для Q=60 л/с и чугунных труб назначаем d=250 мм

Необходимая высота водонапорной башни определяется из уравнения

,

, (21)

где h w - потеря напора на участке трубопровода от точки А до точки В, которая складывается из потери напора по длине и потери напора в местных сопротивлениях:

, (22)

где S 0 - удельное сопротивление трубы; K - расходная характеристика (модуль расхода) трубы.

Скорость в трубопроводе:


Следовательно, поправка на неквадратичность не нужна.

По приложению 5 удельное сопротивление трубы, работающей в квадратичной области сопротивления при d=250 мм:

S 0 кв =2,53 с 2 /м 6

Потери напора формуле (22):

Тогда по формуле (21) высота башни:

Нб=7,51+12-3=16,51 м, округляем до Нб=17 м

Величина свободного напора в конечной точке сети при расходе, равном половине расчетного, определяется по формуле:

, (28)

где - потеря напора в сети при расходе Q 1 .

Q 1 = Q/2=0,03 м 3 /с

Скорость

Нужна поправка на неквадратичность ,

k 1 - поправочный коэффициент, учитывающий неквадратичнoсть, по прил. 6 k 1 =1,112

Потери напора формуле (22):


Задача 8 (в0)

Дано: L 1-2 =600 м, L 2-3 =100 м, L 3-4 =0,5 км=500 м, L 2-5 =0,7 км=700 м, Q 2 =11 л/с=0,011 м 3 /с, Q 3 =9 л/с=0,009 м 3 /с, Q 4 =7 л/с=0,007 м 3 /с, Q 5 =16 л/с=0,016 м 3 /с, q 3-4 =0,01 л/с м, q 2-5 =0,02 л/с м, Нсв=15 м


Требуется:

2. Установить диаметры труб на магистральном направлении по предельным расходам.

3. Определить необходимую высоту водонапорной башни.

4. Определить диаметр ответвления от магистрали.

Вычислить фактические значения свободных напоров в точках водоотбора.

Решение:

1. Определим путевые расходы Q n 3-4 , Q n 2-5 по формуле

где q - заданный удельный путевой расход на участке; L - длина участка.

Q n 3-4 = q 3-4 ∙ L 3-4 =0,01∙500=5 л/с

Q n 2-5 = q 2-5 ∙ L 2-5 =0,02∙700=14 л/с

2. Установим расчетные расходы воды для каждого участка сети, руководствуясь тем, что расчетный расход на участке равен сумме узловых расходов, расположенных за данным участком (по направлению движения воды). При этом равномерно распределенные путевые расходы заменяются сосредоточенными поровну в прилегающих узлах.

Поправка на неквадратичность не нужна.

Для d 2-5 =150 мм с 2 /м 6

Потери напора формуле (22):

6. Вычислим высоту водонапорной башни по формуле

,

где H св - свободный напор в конечной точке магистрали; S×h сумма потерь напора на участках магистрали от башни до конечной точки.

Нб=15+3,61+13,74=32,35 м

Полученное значение H б округляем до Нб=33 м.

Определить напор воды в начале ответвления от магистрали (в точке 2) по формуле

,

где h 1-2 - потеря напора на участке магистрали от башни до ответвления.

Н 2 =33-3,61=29,39 м

Средний гидравлический уклон для ответвления определяем по формуле

, (34)

где H св - требуемый свободный напор в конечной точке ответвления; L с 2 /м 6

Чугаев Р.Р.Гидравлика: Учебник для вузов. 5-е изд., репринтное. - М.: ООО «БАСТЕТ», 2008. - 672 с.: ил.

Штеренлихт Д.В. Гидравлика. - М.: Колос, 2006, - 656 с. ил..

Лапшев Н.Н. Гидравлика. - М.: Академия, 2007. - 295 с.

Ртищева А.С. Теоретические основы гидравлики и теплотехники. Учебное пособие. - Ульяновск, УлГТУ, 2007. - 171 c.

Брюханов О.Н. Основы гидравлики и теплотехники.- М.: Академия, 2008.

Акимов О.В., Козак Л.В., Акимова Ю.М. Гидравлика: учеб. пособ. - Хабаровск: Изд-во ДВГУПС, 2008 - 94 с.: ил.

Акимов О.В., Козак Л.В., Акимова Ю.М. Гидравлика: метод. Указания по выполнению лабораторных работ. Часть 2. - Хабаровск: Изд-во ДВГУПС, 2009 - 27 с.: ил.

Акимов О.В., Акимова Ю.М. Гидравлика. Примеры расчета: учеб. пособ. - Хабаровск: Изд-во ДВГУПС, 2009 - 75 с.: ил.

Акимов О.В., Козак Л.В., Акимова Ю.М, Бирзуль А.Н. Гидравлика: сб. лабораторных работ. - Хабаровск: Изд-во ДВГУПС, 2008 - 83 с.: ил.

Козак Л.В., Ромм К.М., Акимов О.В. Гидравлика. Гидростатика: Сборник типовых задач. В 3-х частях. - Части 1 и 2. - Хабаровск: Изд-во ДВГУПС, 2001

Козак Л.В., Бирзуль А.Н. Гидравлика. Гидродинамика: сб. типовых задач. - Хабаровск: Изд-во ДВГУПС, 2008 - 74 с.: ил.

Областное бюджетное образовательное учреждение

среднего профессионального образования

«Курский монтажный техникум»

Рабочая ПРОГРАММа УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП 06.

основной профессиональной образовательной программы среднего профессионального образования по специальности

140102 Теплоснабжение и теплотехническое оборудование

(базовая подготовка)

г.Курск

РАССМОТРЕНО И ОДОБРЕНО

на заседании ЦК ОПД

Протокол №_____

«____»_____________2012 г.

Председатель ЦК Станар А.М.

СОГЛАСОВАНО

__________________

Зам. директора по УР О.Б. Грунева

«____»______________2012 г.

Рабочая программа учебной дисциплины «Теоретические основы теплотехники и гидравлики» разработана на основе:

Федерального государственного образовательного стандарта по специальности среднего профессионального образования (базовая подготовка), входящей в состав укрупненной группы специальностей 140000 Энергетика, энергетическое машиностроение и электротехника, утвержденного приказом Министерства образования и науки Российской Федерации от 15 февраля 2010года, №114.

Разработчик:

А.А. Катальникова, преподаватель ОБОУ СПО «Курский монтажный техникум».

СОДЕРЖАНИЕ

стр.

  1. ПАСПОРТ рабочей ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

  1. СТРУКТУРА и содержание УЧЕБНОЙ ДИСЦИПЛИНЫ

  1. условия реализации рабочей программы учебной дисциплины

  1. Контроль и оценка результатов Освоения учебной дисциплины

1. паспорт рабочей ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Теоретические основы теплотехники и гидравлики

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 140102 «Теплоснабжение и теплотехническое оборудование» (базовая подготовка), входящей в состав укрупненной группы специальностей 140000 Энергетика, энергетическое машиностроение и электротехника.

Рабочая программа учебной дисциплины может быть использована в дополнительном профессиональном образовании и профессиональной подготовке работников в области теплоснабжения и теплотехнического оборудования при наличии среднего (полного) общего образования. Опыт работы не требуется.

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: дисциплина входит в профессиональный цикл, относится к общепрофессиональным дисциплинам.

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины.

уметь :

выполнять теплотехнические расчеты:

Термодинамических циклов тепловых двигателей и теплосиловых установок;

Расходов топлива; теплоты и пара на выработку энергии;

Коэффициентов полезного действия термодинамических циклов тепловых двигателей и теплосиловых установок;

Потерь теплоты через ограждающие конструкции зданий, изоляцию трубопроводов и теплотехнического оборудования;

Тепловых и материальных балансов, площади поверхности нагрева теплообменных аппаратов;

Определять параметры при гидравлическом расчете трубопроводов, воздуховодов;

Строить характеристики насосов и вентиляторов.

В результате освоения учебной дисциплины обучающийся должен знать :

Параметры состояния термодинамической системы, единицы измерения и соотношение между ними;

Основные законы термодинамики, процессы изменения состояния идеальных газов, водяного пара и воды;

Циклы тепловых двигателей и теплосиловых установок;

Основные законы теплопередачи;

Физические свойства жидкостей и газов;

Законы гидростатики и гидродинамики;

Основные задачи и порядок гидравлического расчета трубопроводов;

Виды, устройства и характеристики насосов и вентиляторов.

1.4. Количество часов на освоение рабочей программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 180 часа, в том числе:

обязательной аудиторной учебной нагрузки обучающегося 120 часа;

самостоятельной работы обучающегося 60 час.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

в том числе:

    учебно - индивидуальная работа студента;

    подготовка рефератов;

    оформление лабораторных работ;

    систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

    решение задач, выполнение упражнений

4

4

5

19

22

6

Итоговая аттестация в форме экзамена

2.2. Тематический план и содержание учебной дисциплины

Теоретические основы теплотехники и гидравлики

Краткий исторический обзор и современный уровень развития гидравлики и теплотехники.

Роль отечественных ученых в развитии этих наук.

Раздел 1. Физические свойства жидкостей и газов

Тема 1.1.

Физические свойства жидкости и газов

Физические свойства жидкостей: плотность, удельный вес, удельный объем, зависимость между ними, сжимаемость, вязкость, зависимость от температуры и давления.

Самостоятельная работа

Раздел 2. Основы гидростатики

Тема 2.1

Гидростатическое давление. Основное уравнение гидростатики.

Силы, действующие внутри находящейся жидкости. Гидростатическое давление в точке, его свойства, единицы измерения. Абсолютное и избыточное давление.

Основное уравнение гидростатики. Физическая сущность и графическое представление уравнения гидростатики. Напоры. Приборы для измерения давления..

Лабораторные работы

Измерение давления пьезометром и манометром. Перевод единиц измерения давления.

Практические занятия

Решение задач на составление уравнения равновесия жидкости

Самостоятельная работа:

Тема 2.2. Силы давления жидкости и газа на плоские и криволинейные стенки.

Закон Паскаля. Гидравлический пресс, гидравлический домкрат.

Сила гидростатического давления на плоские поверхности. Центр давления. Гидростатический парадокс. Графический способ определения силы гидростатического давления

Сила гидростатического давления на цилиндрическую поверхность. Формула расчета труб на прочность. Закон Архимеда. Плавление тел и их устойчивость.

Практические занятия

Решение задач по определению силы давления на различные поверхности, определении толщины стенки труб

Самостоятельная работа обучающихся:

Оформление практических работ

Раздел 3. Основы гидродинамики

Тема 3.1. Основные законы движения жидкости

Виды движения жидкостей: установившееся, неустановившееся, равномерное, неравномерное. Понятие о струйчатом движении жидкости. Поток жидкости, элементы потока. Скорость и расход жидкости. Уравнение неразрывности потока.

Уравнение Бернулли, его геометрический и энергетический смысл.

Лабораторные работы

Исследование уравнения Бернулли. Построение напорной и пьезометрической линий.

Самостоятельная работа:

Оформление лабораторных работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 3.2. Гидравлические сопротивления

Гидравлические сопротивления и их виды. Режимы движения жидкости.

Критерий Рейнольдса. Характеристика ламинарного и турбулентного движения жидкости. Потери напора по длине потока и в местных сопротивлениях (запорной арматуре, при расширении и сужении потока, изменении направления потока). Расчет потерь напора при внезапном расширении потока. Коэффициент гидравлического трения, его определение в ламинарном и турбулентном режимах движения жидкости.

Лабораторные работы

Определение двух режимов движения жидкости. Определение числа Рейнольдса.

Определение потерь напора по длине, коэффициента гидравлического трения.

Определение местных потерь напора, коэффициента местных сопротивлений.

Самостоятельная работа

Оформление лабораторных работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Тема 3.3. Гидравлический расчет трубопроводов

Трубопроводы и их виды. Гидравлический расчет простого и сложного трубопроводов. Гидравлический удар в трубопроводах (прямой и непрямой).

Расчет безнапорных и коротких трубопроводов.

Практические занятия

- Расчет простого трубопровода

Самостоятельная работа:

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Подготовка рефератов

Примерная тематика рефератов:

Современные способы защиты трубопроводов от гидравлического удара.

Явление кавитации при течении жидкости в трубах.

Меры, применяемые для предотвращения кавитации.

Тема 3.4. Истечение жидкости через отверстия и насадки

Истечение жидкости из отверстий при постоянном напоре. Понятия "отверстие в тонкой стенке" и "малое отверстие". Виды насадок. Истечение жидкости через насадки при постоянном напоре.

Практические занятия

Определение расхода жидкости при истечении из отверстия и через насадки

Самостоятельная работа:

- оформление практических работ

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Контрольная работа по разделу 3. Основы гидродинамики

Раздел 4 Насосы и вентиляторы

Тема 4.1. Виды и принцип действия насосов

Центробежные насосы, их виды, принцип действия. Полный напор, предельная высота всасывания. Подача, напор, мощность и КПД центробежного насоса, их определение. Зависимость этих параметров от частоты вращения двигателя.

Формулы пропорциональности. Характеристики центробежных насосов и напорных трубопроводов. Параллельная и последовательная работа центробежных насосов. Поршневые насосы, их виды, принцип действия. Струйные насосы.

Практические работы

Построение характеристик центробежного насоса

Самостоятельная работа:

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Учебно - индивидуальная работа студента.

Тема 4.2. Виды и принцип действия вентиляторов

Центробежные и осевые вентиляторы, их виды и принцип действия. Производительность, давление, потребляемая мощность и КПД вентиляторов. Зависимость параметров вентилятора от частоты вращения двигателя.

Практические работы

Построение характеристик центробежного вентилятора.

Самостоятельная работа:

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Раздел 5. Основы технической термодинамики

Тема 5.1. Основные положения технической термодинамики. Газовые законы. Газовые смеси.

Тепловая и механическая энергия. Основные термодинамические параметры состояния рабочего тела. Идеальный и реальный газ. Молекулярно-кинетическая теория газов.

Газовая смесь, её состав. Парциальное давление и приведённый объём компонентов газовой смеси. Закон Дальтона. Соотношение между массовыми и объёмными составами смеси.

Самостоятельная работа:

систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 5.2. Теплоёмкость

Теплоёмкость и количество теплоты. Постоянная и переменная теплоёмкость. Средняя и истинная теплоёмкость. Теплоёмкость газовой смеси

Практические занятия:

Определение объёмной теплоёмкости воздуха при постоянном давлении

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 5.3. Законы термодинамики. Термодинамические процессы.

Первый закон термодинамики- закон сохранения и превращения тепловой и механической энергии. Единицы измерения теплоты и работы. Энтальпия газа. Анализ основных термодинамических процессов изменения состояния идеальных газов: изохорного, изобарного, изотермического, адиабатного, политропного. Уравнение состояния термодинамических процессов, их изображение на pv - диаграмме. Определение работы, изменение внутренней энергии и количества теплоты.

Второй закон термодинамики. Круговые процессы или циклы. Термический КПД цикла. Равновесное и неравновесное состояние рабочего тела. Обратимые и необратимые процессы и циклы. Идеальный цикл Карно, его изображение на pv – диаграмме. Второй закон термодинамики для обратимых и необратимых процессов. Энтропия её физический смысл. Тs -диаграмма. Третий закон термодинамики.

Практические занятия:

Термодинамический расчёт циклов и определение их термических коэффициентов полезного действия (КПД), изображать циклы на pv и Ts - диаграммах.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Решение задач, выполнение упражнений

Тема 5.4. Газовые циклы

Двигатели внутреннего сгорания. Циклы ДВС с различными способами подвода теплоты. Их изображение на pv и Ts - диаграммах. Термический КПД циклов ДВС. Газотурбинные установки. Циклы ГТУ с различными способами подвода теплоты. Их изображение на pv и Ts - диаграммах. Термический КПД циклов ГТУ. Термодинамические основы работы компрессора. Изображение цикла компрессора на pv и Ts - диаграммах.

Практические занятия:

Проведение сравнения термических КПД циклов ДВС и ГТУ с различными способами подвода теплоты.

Самостоятельная работа

оформление практических работ;

Решение задач, выполнение упражнений

Тема 5.5. Реальные газы. Водяной пар и его свойства

Свойство реальных газов. Характеристическое уравнение реальных газов Ван-дер-Ваальса. Водяной пар как реальный газ. Парообразование, испарение, кипение, конденсация, сублимация, десублимация.

Насыщенный водяной пар. Сухой и влажный насыщенный пар. Перегретый пар. Степень сухости. Влажности и перегрева. Пограничные кривые и критическая точка. Таблицы термодинамических свойств воды и водяного пара.

Практические занятия:

Определение параметров водяного пара с использованием таблиц.

Вычисление параметров влажного насыщенного пара с использованием таблиц водяного пара и математических зависимостей.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Тема 5.6. Термодинамические процессы водяного пара

Основные процессы изменения состояния водяного пара: изобарный, изохорный, изотермический и адиабатный. Изображение основных термодинамических процессов водяного пара на pv и Ts - диаграммах.

Определение количества теплоты, изменения внутренней энергии, энтальпии, энтропии и удельного объёма водяного пара а каждом термодинамическом процессе.

Практические занятия:

Расчёт процессов изменения состояния водяного пара с помощью таблиц и диаграмм.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий;

Решение задач, выполнение упражнений.

Тема 5.7. Истечение и дросселирование газов и паров

Общие понятия истечения. Работа проталкивания и располагаемая работа.

Скорость и критическая скорость истечения, секундный массовый расход газа. Зависимость истечения от соотношения давлений. Практическое применение истечения. Комбинированное сопло Лаваля.

Процесс дросселирования и его особенности. Техническое применение дросселирования.

Практические занятия:

Определение параметров и характеристик водяного пара при истечении и дросселировании

Самостоятельная работа

оформление практических работ;

Подготовка реферата.

Примерная тематика рефератов:

Комбинированное сопло Лаваля;

Практическое применение процесса дросселирования;

Техническое применение процесса истечения.

Тема 5.8. Циклы паротурбинных установок.

Схема паротурбинной установки. Цикл Ренкина идеальный пароводяной цикл тепловой электрической станции, изображение цикла на pv и Ts - диаграммах. Регенеративный цикл паротурбинной установки. Цикл с промежуточным перегревом пара. Бинарный и парогазовый циклы теплосиловых установок.

Практические занятия:

Изображение циклов паротурбинных установок на pv и Ts - диаграммах

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Раздел 6. Основы теплопередачи

Тема 6.1. Основные положения теории теплообмена.

Процесс передачи тепла теплопроводностью, конвекцией и излучением. Понятие о теплопередаче. Передача теплоты через плоскую однослойную стенку. Закон Фурье

Передача теплоты теплопроводностью через многослойную плоскую стенку. Передача теплоты теплопроводностью через многослойную цилиндрическую стенку.

Практические занятия:

Определение коэффициента теплопроводности и расчёт количества теплоты переданного теплопроводностью через стенки различной формы.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 6.2. Конвективный теплообмен. Теплоотдача и теплопередача.

Основные положения конвективного теплообмена. Теплоотдача между плоской стенкой и жидкостью. Коэффициент теплоотдачи, его физический смысл Теплопередача через многослойную стенку и цилиндрические стенки. Коэффициент теплопередачи, его физический смысл.

Практические занятия:

Расчёт количества теплоты, передаваемого от теплоносителя к стенкам различной формы.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 6.3.Теплопередача при свободном движении жидкости, вынужденном продольном и поперечном обтекании труб, изменение агрегатного состояния вещества.

Факторы, обуславливающие свободное движение жидкости. Распределение температур и скоростей в пограничном слое. Характер движения жидкости вдоль вертикальной стенки, вблизи горизонтальных труб и пластин. Уравнение для определения коэффициента теплоотдачи, условия его применения.

Теплоотдача при продольном обтекании гладких труб в турбулентном режиме. Коэффициент теплоотдачи. Процесс теплоотдачи при поперечном обтекании труб. Шахматное и коридорное расположение труб в пучках. Критериальное уравнение.

Условия возникновения конденсации. Термическое сопротивление при конденсации пара. Определение коэффициента теплоотдачи при конденсации. Условие возникновения кипения. Коэффициент теплоотдачи при кипении и зависимость его от различных факторв.

Практические занятия:

Расчёт коэффициента теплоотдачи с помощью критериальных уравнений в различных случаях конвективного теплообмена.

Самостоятельная работа

Оформление практических работ;

Решение задач выполнение упражнений;

Тема 6.4. Основные понятия и законы теплового излучения. Теплообмен излучением между телами.

Свойства теплового излучения. Поглощающая, отражательная и пропускная способность тел. Основные законы теплового излучения: законы Планка, Стефана-Больцмана, Ламберта, Кирхгофа. Различные случаи теплообмена излучением.

Практические занятия:

Расчёт количества лучистой теплоты, степени черноты поверхности тел. излучательной и поглощательной способности тел.

Самостоятельная работа

Оформление практических работ;

Систематическая проработка конспектов занятий, учебной и специальной литературы по вопросам к параграфам, главам учебных пособий

Тема 6.5. Теплообменные аппараты.

Назначение и классификация теплообменных аппаратов. Принцип работы поверхностных и смешивающих теплообменных аппаратов. Основные схемы движения теплоносителей. Уравнение теплового баланса и теплопередачи в теплообменном аппарате. Коэффициент теплопередачи теплообменного аппарата. Определение поверхности нагрева теплообменного аппарата.

Практические занятия:

Составлении уравнения теплового баланса и теплопередачи а теплообменных аппаратах.

Самостоятельная работа

оформление практических работ;

Индивидуальная учебная работа студентов

Контрольная работа по разделу 6. Основы теплопередачи

Для характеристики уровня освоения учебного материала используются следующие обозначения:

1. – ознакомительный (узнавание ранее изученных объектов, свойств);

2. – репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);

3. – продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач).

3. условия реализации программы дисциплины

3.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличия лаборатории гидравлики, теплотехники и аэродинамики.

Оборудование учебного кабинета:

    посадочные места по количеству обучающихся;

    рабочее место преподавателя, оборудованное персональным компьютером с лицензионным или свободным программным обеспечением, соответствующим разделам программы и подключенным к сети Internet и средствами вывода звуковой информации;

    комплект учебно-наглядных пособий «Основы гидравлики, теплотехники и аэродинамики»;

    объемные модели насосов и вентиляторов;

    виртуальная лаборатория «Гидравлика»;

    сканер;

    принтер.

Технические средства обучения:

    мультимедиапроектор или мультимедийная доска;

    фото или/и видео камера;

    web-камера.

3.2. Информационное обеспечение обучения

Основные источники:

1. О.Н.Брюханов, В.А.Жила. Основы гидравлики, теплотехники и аэродинамики. - М.: Инфра-М, 2010.

2. И.А. Прибытков, И.А. Левицкий. Теоретические основы теплотехники.- М.: Издательский центр «Академия», 2004.

Дополнительные источники:

    В.И. Калицун. Гидравлика, водоснабжение и канализация. – М.: Стройиздат, 2000.

    В.И.Калицун, Е.В. , К.И. . Основы гидравлики, теплотехники и аэродинамики. – М.: Стройиздат, 2005.

    В.Н. Луканин. Теплотехника. – М.: Высшая школа, 1999.

Интернет-ресурсы:

    http://twt.mpei.ru/GDHB/OGTA.html

4. Контроль и оценка результатов освоения Дисциплины

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов.

Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и оценки результатов обучения

должен уметь :

выполнять теплотехнические расчеты:

Термодинамических циклов тепловых двигателей и теплосиловых установок;

Защита практической работы

Расходов топлива; теплоты и пара на выработку энергии;

Проверочная работа по теме

Коэффициентов полезного действия термодинамических циклов тепловых двигателей и теплосиловых установок;

Защита практической работы

Потерь теплоты через ограждающие конструкции зданий, изоляцию трубопроводов и теплотехнического оборудования;

Защита практической работы

Тепловых и материальных балансов, площади поверхности нагрева теплообменных аппаратов;

Защита практической работы

Определять параметры при гидравлическом расчете трубопроводов, воздуховодов;

Проверочная работа по теме

Строить характеристики насосов и вентиляторов.

Проверка выполнение самостоятельной домашней работы

Опрос по индивидуальным заданиям

В результате освоения учебной дисциплины обучающийся должен знать :

Параметры состояния термодинамической системы, единицы измерения и соотношение между ними;

Основные законы термодинамики, процессы изменения состояния идеальных газов, водяного пара и воды;

Циклы тепловых двигателей и теплосиловых установок;

Оценка выполнения устных и письменных упражнений

Контрольная работа

Физические свойства жидкостей и газов;

Фронтальный и индивидуальный опрос во время аудиторных занятий

Законы гидростатики и гидродинамики;

Оценка фронтального и индивидуального опроса во время аудиторных занятий.

Анализ результатов письменного тестирования.

Контрольная работа

Основные задачи и порядок гидравлического расчета трубопроводов;

Проверка самостоятельной работы

Виды, устройства и характеристики насосов и вентиляторов.

Анализ результатов письменного тестирования

Разработчик:

ОБОУ СПО «КМТ» _________ __ преподаватель _____ __ А.А. Катальникова

Эксперты:

ОБОУ СПО «КМТ» ________ _ методист ___ ____ М. Г. Денисова _____

____________________ _______ ___________________ _________________________

(место работы) подпись (занимаемая должность) (инициалы, фамилия)

Теоретические основы процессов холодильных установок и машин, а также концепций кондиционирования воздуха в основном базируются на двух фундаментальных науках: термодинамике и гидравлике.

Определение 1

Термодинамика - это наука, изучающая закономерности превращения внутренней энергии в различные химические, физические и другие процессы, рассматриваемые учеными на макроуровне.

Термодинамические положения основывается на первом и втором началах термодинамики, которые впервые были сформулированы в начале XIX столетия и стали развитием основ механической гипотезы теплоты, а также закона превращения и сохранения энергии, сформулированных великим русским исследователем М. В, Ломоносовым.

Главным направлением термодинамики является техническая термодинамика, которая занимается исследованием процессов взаимной трансформации теплоты в работу и условий, при которых эти явления совершаются наиболее эффективно.

Определение 2

Гидравлика - наука, исследующая законы равновесия и движения жидкостей, а также разрабатывающая методы использования их к решению сложных инженерных задач.

Принципы гидравлики часто применяются при решении многих вопросов, связанных с конструированием, проектированием, эксплуатацией и строительством различных гидротехнических трубопроводов, сооружений и машин.

Выдающимся основоположником гидравлики считают древнегреческого мыслителя Архимеда, написавшего научную работу «О плавающих телах». Гидравлика как наука возникла намного раньше, чем термодинамика, что непосредственно связано с общественной интеллектуальной деятельностью человека.

Развитие гидравлики и термодинамики

Рисунок 1. Гидравлический способ измерения расхода. Автор24 - интернет-биржа студенческих работ

Гидравлика представляет собой комплексную теоретическую дисциплину, тщательно изучающую вопросы, связанные с механическим движением различных жидкости в природных и техногенных условиях. Поскольку все элементы рассматриваются как неделимые и непрерывные физические тела, то гидравлику можно считать одним из разделов механики сплошных сред, к каковым принято относить и особое вещество - жидкость.

Уже в Древнем Китае и Египте люди умели строить на реках плотины и водяные мельницы, оросительные системы на огромных рисовых полях, в которых применялись водоподъемные мощные машины. В Риме за шесть столетий до н. э. был возведен водопровод, что говорит о сверхвысокой технической культуре того времени. Первым же трактатом по гидравлике следует считать учения Архимеда, который первым изобрел машину для подъема воды, названную в результате «архимедовым винтом». Именно это устройство является прообразом современных гидравлических насосов.

Первые пневматические концепции возникли гораздо позднее, чем гидравлические. Только в XVIII в. н. э. на территории Германии была представлена машина для «движения газа и воздуха». По мере развития техники модернизировались гидравлические системы и быстро расширялась область их практического применения.

В развитии термодинамики в XIX столетии ученые выделяют три главных периода, каждый из которых имел свои отличительные свойства:

  • первый – характеризовался формированием первого и второго термодинамические начала;
  • второй период продолжался до середины XIX века и выделился научными трудами выдающихся физиков Европы таких, как англичанин Дж. Джоуль, немецкий исследователь Готлиб, и У. Томсон;
  • третье поколение термодинамики открывает известный австрийский ученый и член Санкт-Петербургской Академии Наук Людвиг Больцман, которые посредством многочисленных экспериментов установили взаимосвязь механической и тепловой формы движения.

Далее развитие термодинамики не стояло на месте, а продвигалось ускоренными темпами. Так, американец Гиббс разработал в 1897 году химическую термодинамику, то есть сделал физическую химию абсолютно дедуктивной наукой.

Основные понятия и методы двух научных направлений

Рисунок 2. Гидравлическое сопротивление. Автор24 - интернет-биржа студенческих работ

Замечание 1

Предметом исследований гидравлики являются основные законы равновесия и хаотичного движения жидкостей, а также методы активизации гидравлических систем водоснабжения и ирригации.

Все эти постулаты были известны человеку еще задолго до нашей эры. Термин «жидкость» в гидромеханике обладает более широким значением, чем это принято считать в термодинамике. В понятие «жидкость» включают абсолютно все физические тела, способные изменять свою форму под влиянием сколь угодно малых сил.

Поэтому под этим определением подразумеваются не только обычные (капельные) жидкости, как в термодинамике, но и газы. Несмотря на различие изучаемых разделов физики, законы движения капельных газов и жидкостей при определенных условиях возможно считать одинаковыми. Основным из этих условий является показатель скорости по сравнению с таким же звуковым параметром.

Гидравлика изучает в первую очередь течения жидкостей в различных руслах, то есть потоки, ограниченные плотными стенками. В понятие «русло» включают все устройства, ограничивающие сам поток, в том числе проточные части насосов, трубопроводы, зазоры и другие элементы гидравлических концепций. Таким образом, в гидравлике изучаются в основном внутренние течения, а в термодинамике – внешние.

Замечание 2

Предметом термодинамического анализа является система, которая может отделяться от внешней среды некоторой контрольной поверхностью.

Метод исследования в термодинамике является макроскопическим методом.

Для точной характеристики макроструктурных свойств системы используются величины макроскопической концепции:

  • природа:
  • температура;
  • давление;
  • удельный объем.

Особенность термодинамического метода заключается в том, что его базой выступает единственный фундаментальный закон природы - закон превращения и сохранения энергии. Это означает, что все ключевые соотношения, составляющие основу математического аппарата, выводятся только из этого положения.

Основы гидравлики и термодинамики

При изучении основ гидравлики и термодинамики необходимо опираться на представления тех разделов физики, которые помогут лучше освоить и понять принцип функционала гидравлических машин.

Все физические тела состоят из атомов, находящиеся в постоянном движении. Такие элементы притягиваются на относительно небольшом расстоянии и отталкиваются на достаточно близком. В центре мельчайшей частицы находится положительно заряженное ядро, вокруг которого хаотично перемещаются электроны, формируя электронные оболочки.

Определение 3

Физическая величина - это количественное описание свойств материального тела, которое имеет собственную единицу измерения.

Почти полтора столетия назад немецкий физик К. Гаусс доказал, что, если выбрать самостоятельные единицы измерений нескольких параметров, то на их основе посредством физических законов возможно установить единицы величин, входящих в абсолютно любой раздел физики.

Единица измерения скорости в гидравлике является производной единицей концепции, полученной из единиц системы в виде метра и секунды. Рассмотренные физические величины (ускорение, скорость, вес) определяются в термодинамике с помощью основных единиц измерения и имеют размерность. Несмотря на наличие молекулярных сил, молекулы воды всегда находятся в постоянном движении. Чем выше температура жидкого вещества, тем быстрее движутся его составные части.

Остановимся подробнее на некоторых физических свойствах жидкостей и газов. Жидкости и газы в гидравлической системе могут легко деформироваться, сохраняя изначальный объем. В термодинамической системе все выглядит совершенно иначе. Для такой деформации в термодинамике не нужно совершать какую-либо механическую работу. Это означает, что действующие в определенной концепции элементы слабо сопротивляются вероятному сдвигу.



mob_info