Ремонт обратного осмоса фильтры для воды. Очистка воды обратным осмосом. Установка фильтров с обратным осмосом. Типовые случаи неисправности и методы их исправления

В настоящее время фильтры, работающие по принципу обратного осмоса становятся всё более популярными среди потребителей. В таких фильтрах имеется специальная мембрана, а движение воды через нее из более концентрированного раствора в направление менее концентрированного.
Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.
Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде ледников, которая признается наиболее экологически чистой и полезной для человека.
Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.
Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.
Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет.
Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.
Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется осмотическим давлением.
В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.
Этот процесс называется обратным осмосом. По этому принципу и работают все мембраны обратного осмоса.
В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.
По этому принципу и работают все мембраны обратного осмоса. Процесс обратного осмоса осуществляется на осмотических фильтрах, содержащих специальные мембранах, задерживающих растворенные в воде органические и минеральные примеси, бактерии и вирусы. Очистка воды происходит на уровне молекул и ионов, при заметно уменьшается общее солесодержание в воде. Много домашних фильтров обратного осмоса используются в США и Европе для очистки муниципальной воды с содержанием солей от 500 до 1000 мг/л; обратноосмотические системы высокого давления очищают солоноватую и даже морскую воду (36000 мг/л) до качества нормальной питьевой воды.
Фильтры на основе обратного осмоса удаляют из воды ионы Na, Са, Cl, Fe, тяжелых металлов, инсектициды, удобрения, мышьяк и многие другие примеси. «Молекулярное сито», которое представляют собой обратноосмотические мембраны, задерживает практически все примесные элементы, содержащиеся в воде, независимо от их природы, что оберегает потребителя воды от неприятных сюрпризов, связанных с неточным или неполным анализом исходной воды, особенно из индивидуальных скважин.
В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую сторону мембраны. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.
Основным и самым важным элементом обратноосмотических установок является мембрана. Исходная, загрязненная различными примесями и частицами, вода пропускается через поры мембраны, столь мелкие, что загрязнения сквозь них практически не проходят. Для того чтобы поры мембраны не забивались, входной поток направляется вдоль мембранной поверхности, который вымывает загрязнения. Таким образом, один входной поток разделяется на два выходных потока: раствор, проходящий через мембранную поверхность (пермеат) и часть исходного потока, не прошедшего через мембрану (концентрат).
Обратноосмотическая полупроницаемая мембрана представляет собой композитный полимер неравномерной плотности. Этот полимер образован из двух слоев, неразрывно соединенных между собой. Наружный очень плотный барьерный слой толщиной около 10 миллионных см лежит на менее плотном пористом слое, толщина которого составляет пять тысячных см. Осмотическая мембрана действует как барьер для всех растворенных солей и неорганических молекул, а также органических молекул с молекулярной массой более 100. Молекулы воды свободно проходят через мембрану, создавая поток пермеата. Качество пермеата сопоставимо с качеством обессоленной воды, полученной по традиционной схеме Н-ОН-ионирования, а по некоторым параметрам (окисляемость, содержание кремниевой кислоты, железа и др.) превосходит.
Обратноосмотическая мембрана - это прекрасный фильтр и теоретически содержание растворенных минеральных веществ в полученной в результате фильтрации чистой воде должно составлять 0 мг/л (то есть их совсем не должно быть!), независимо от их концентрации во входящей воде.
Обратноосмотическая мембрана незаменима для избавления воды от микробов, поскольку размер пор мембран значительно меньше размер самих вирусов и бактерий.
Фактически, в нормальных рабочих условиях, из входящей воды извлекается 98 – 99 % растворенных в ней минеральных веществ. В полученной в результате фильтрации чистой воде, остается 6 – 7 мг/л растворенных минеральных веществ.
Растворенные в воде минеральные вещества имеют электрический заряд и полупроницаемая мембрана также имеет собственный электрический заряд. За счет этого 98 – 99% молекул минеральных веществ отталкивается от обратноосмотической мембраны. Однако все молекулы и ионы находятся в постоянном, хаотичном движении. В какой-то момент движущиеся противоположно заряженные ионы оказываются на очень близком расстоянии друг от друга, притягиваются, их электрические заряды взаимно нейтрализуются и образуется незаряженная частица. Незаряженные частицы уже не отталкиваются от обратноосмотической мембраны и могут проходить через нее.
Но не все незаряженные частицы попадают в чистую воду. Обратноосмотическая мембрана устроена таким образом, что величина ее пор максимально приближена к величине самых маленьких в природе молекул воды, поэтому через обратноосмотическую мембрану могут проходить только мельчайшие незаряженные молекулы минеральных веществ, а самые опасные крупные молекулы, например, солей тяжелых металлов, не смогут проникнуть через нее.
На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки при применении метода обратного осмоса. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.
В процессе очищения воды по принципу обратного осмоса концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий рассол в дренаж.
Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов: давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы системы обратного осмоса. Степень очистки воды в таких фильтрах составляет по большинству неорганических элементов 85%-98%. Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах.
Неорганические вещества очень хорошо отделяются мембраной обратного осмоса. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.
Мембрана обратного осмоса также удаляет из воды и органические вещества. При этом органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану обратного осмоса. Однако производители утверждают, что большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.
В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.
В промышленности такие мембраны изготавливают из полимерных и керамических материалов. В зависимости от размера пор, с их помощью осуществляется:
обратный осмос;
микрофильтрация
ультрафильтрация;
нанофил ьтрация (нанометр - одна миллиардная метра, или одна тысячная микрона, то есть 1 нм = 10 ангстрем = 0,001 мкм.);
Обратноосмотические мембраны содержат самые узкие поры, и потому являются самыми селективными. Они задерживают все бактерии и вирусы, бoльшую часть растворенных солей и органических веществ (в том числе железо и гумусовые соединения, придающие воде цветность и патогенные вещества), пропуская лишь молекулы воды небольших органических соединений и легких минеральных солей. В среднем RO мембраны задерживают 97-99 % всех растворенных веществ, пропуская лишь молекулы воды, растворенных газов и легких минеральных солей.
Материал мембранных фильтров – нитрат целлюлозы. Как показала многолетняя практика, этот материал обеспечивает оптимальные условия роста задержанных микроорганизмов, исключая получение ложного отрицательного результата.
Мембранный фильтр состоит из нескольких слоев, которые соединены вместе и обмотаны вокруг пластиковой трубки. Материал мембраны полупроницаем. Вода продавливается через полупроницаемую мембрану, которая отторгает даже низкомолекулярные соединения. Схематическое изображение мембраны приведено ниже.
Обратноосмотические мембраны используются во многих отраслях промышленности, где есть необходимость в получении воды высокого качества (разлив воды, производство алкогольных и безалкогольных напитков, пищевая промышленность, фармацевтика, электронная промышленность и т. д.).
Использование двухступенчатого обратного осмоса (вода дважды пропускается через обратноосмотические мембраны) позволяет получить дистиллированную и деминерализованную воду. Такие системы являются экономически выгодной альтернативой дистилляторам-испарителям и используются на многих производствах (гальваника, электроника и т. д.). В последние годы начался новый бум в мембранной технологии.
Мембранные фильтры стали все больше и больше использоваться в быту. Это стало возможным благодаря научным и технологическим достижениям: мембранные аппараты стали дешевле, возросла удельная производительность и снизилось рабочее давление. Системы обратного осмоса позволяют получить чистейшую воду, удовлетворяющую СанПиН «Питьевая вода» и европейским стандартам качества для питьевого водопользования, а также всем требованиям для использования в бытовой технике, системе отопления и сантехнике.
Мембранная фильтрация незаменима для избавления воды от микробов, поскольку размер пор мембран значительно меньше размер самих вирусов и бактерий.
Микрофильтрационные мембраны с размером пор 0,1-1,0 мкм задерживают мелкие взвеси и коллоидные частицы, определяемые как мутность. Как правило, они используются, когда есть необходимость в грубой очистке воды или для предварительной подготовки воды перед более глубокой очисткой.
При переходе от микрофильтрации к обратному осмосу размер пор мембраны уменьшается и, следовательно, уменьшается минимальный размер задерживаемых частиц. При этом, чем меньше размер пор мембраны, тем большее сопротивление она оказывает потоку и тем большее давление требуется для процесса фильтрации.
Ультрафильтрация (УФ) УФ-мембрана задерживает взвешенные вещества, микроорганизмы, водоросли, бактерии и вирусы, значительно снижает мутность воды. В ряде случаев, УФ-мембраны эффективно уменьшают окисляемость и цветность воды. Ультрофильтрация заменяет отстаивание, осаждение, микрафильтрацию.
Ультрафильтрационные мембраны с размером пор от 0,01 до 0,1 мкм удаляют крупные органические молекулы (молекулярный вес больше 10 000), коллоидные частицы, бактерии и вирусы, не задерживая при этом растворенные соли. Такие мембраны применяются в промышленности и в быту и обеспечивают стабильно высокое качество очистки от вышеперечисленных примесей, не изменяя при этом минеральный состав воды.
В промышленной водоподготовке наибольшее распространение получили половолоконные мембраны, основным элементом которых является полое волокно диаметром 0,5-1,5 мм с нанесенной на внутренней поверхности ультра-фильтрационной мембраной. Для получения большой фильтрующей поверхности группы полых волокон группируются в модули обеспечивая 47-50 м2.
Ультрафильтрация позволяет сохранить солевой состав воды и осуществить ее осветление и обеззараживание практически без применения химреагентов.
Обычно, УФ-установка работает в режиме тупиковой фильтрации без сброса концентрата. Процесс фильтрации чередуется с обратной промывкой мембран от накопившихся загрязнений. Для этого часть очищенной воды подается в обратном направлении. Периодически в промывную воду дозируется раствор моющих реагентов. Промывные воды, являющиеся концентратом составляют не более 10?20 % от потока исходной воды. Один-два раза в год производится усиленная циркуляционная промывка мембран специальными моющими растворами.
Ультрафильтрация может применяться для получения питьевой воды непосредственно из поверхностного источника. Поскольку УФ-мембрана является барьером для бактерий и вирусов, не требуется первичное хлорирование воды. Обеззараживание осуществляется уже непосредственно перед подачей воды потребителю.
Поскольку ультрафильтрат полностью свободен от взвешенных и коллоидных веществ, то возможно применение данной технологии как предподготовки воды перед обратным осмосом.
Нанофильтрация (НФ) занимает промежуточное положение между обратным осмосом и ультрафильтрацией. Нанофильтрационные мембраны характеризуются размером пор от 0,001 до 0,01 мкм. Они задерживают органические соединения с молекулярной массой выше 300 и пропускают 15-90 % солей в зависимости от структуры мембраны.
Обратный осмос и нанофильтрация очень близки по механизму разделения сред, схеме организации процесса, рабочему давлению, мембранам и оборудованию. Нанофильтрационная мембрана частично задерживает органические молекулы, растворенные соли, все микроорганизмы, бактерии и вирусы. При этом степень обессоливания ниже, чем при обратном осмосе. Нанофильтрат почти не содержит солей жесткости (снижение в 10-15 раз), т.е. он умягчен. Происходит также эффективное снижение цветности и окисляемости воды. В результате исходная вода умягчается, обеззараживается и частично обессоливается.
Современные нанофильтрационные фильтры – альтернатива установкам ионообменного умягчения воды.
Последнее поколение фильтров для воды - фильтры на основе наноуглерода. На мировом рынке они пока не распространены, но, несмотря на это, стоят относительно небольших денег. Их преимущество перед другими фильтрами - в особой тонкости очистки и деликатности очистки - они не удаляют из воды все подряд, т.е. оставляют в воде соли и микроэлементы. При этом они очищают воду на наноуровне, т.е. работают в десятки и сотни лучше раз аналогов - фильтров на основе угольного сорбента.
Но наибольшее признание получили обратноосмотические мембранные фильтры очистки воды благодаря уникальному качеству воды, достигаемому после фильтрации. Такие фильтры эффективно справляются с низкомолекулярными гуминовыми соединениями, которые придают воде желтоватый оттенок и ухудшают ее вкусовые свойства, и которые очень трудно удалить другими методами. С использованием мембранных обратноосмотических фильтров можно получить чистейшую воду. Такая вода не только безопасна для здоровья, но и сохраняет белоснежность дорогостоящей сантехники, не выводит из строя бытовую технику и систему отопления, и просто радует глаз.
Обратноосмотические фильтры имеют и ряд других достоинств. Во-первых, загрязнения не накапливаются внутри мембраны, а постоянно сливаются в дренаж, что исключает вероятность их попадания в очищенную воду. Благодаря такой технологии даже при значительном ухудшении параметров исходной воды качество очищенной воды остается стабильно высоким. Может лишь понизиться производительность, о чем потребитель узнает по счетчикам, встроенным в систему. В этом случае мембрану необходимо промыть специальными реагентами. Такие промывки проводятся регулярно (примерно 4 раза в год) специалистами сервисной службы. Одновременно производится контроль работы установки. Другое преимущество - отсутствие химических сбросов и реагентов, что обеспечивает экологическую безопасность. Мембранные системы компактны и прекрасно вписываются в интерьер. Они просты в эксплуатации и не нуждаются во внимании со стороны пользователя.
Мембранные системы очистки воды достаточно дорогостоящи. Но, учитывая то, что при использовании «накопительных» систем скорее всего понадобится несколько установок различного действия, то общая их стоимость тоже обойдется недешево. А если говорить об эксплуатационных затратах, то для мембранных систем они значительно меньше.
Сейчас технология обратного осмоса активно развивается. Установки постоянно совершенствуются. Современные системы представляют собой целые агрегаты с предочисткой воды, устанавливающиеся под мойкой или на линии подачи воды.
Осмотические фильтры получают все большую популярность в бытовом использовании благодаря надежности, компактности, удобству в эксплуатации и, конечно же, стабильно высокому качеству получаемой воды. Многие потребители утверждают, что только благодаря обратному осмосу узнали настоящий цвет чистой воды.
Большинство фильтров на основе обратного осмоса, используемых в жилых помещениях, комплектуются композитными тонкопленочными мембранами, способными задерживать от 95 до 99% всех растворенных веществ. Эти мембраны могут работать в широком диапазоне рН и температуры, а также при высоких концентрациях растворенных в воде примесей.
Наиболее прогрессивными системами подготовки питьевой воды в настоящее время являются обратноосмотические системы, дающие воду на выходе по степени очистке близкую к дистиллированной. Однако, в отличие от дистиллированной, она обладает прекрасными вкусовыми качествами, так как в ней сохранены растворенные газы.
Ключевая компонента такой системы – полупроницаемая мембрана, обеспечивающая степень очистки воды до 98-99% в отношении практически любых загрязнителей. Мембрана пропускает через себя лишь молекулы воды, отфильтровывая всё остальное. Характерный размер пор мембраны – 1 Ангстрем (10-10 м). Благодаря такой очистке из воды удаляются растворенные неорганические и органические соединения, а также тяжелые металлы, бактерии и вирусы.
В некоторых случаях применение обратного осмоса необходимо. Например, для умягчения воды. Обычно для этого применяют ионообменные смолы, которые заменяют в воде ионы кальция и магния, ответственные за жесткость, на ионы натрия. Соли натрия не образуют накипи и допустимые концентрации натрия в воде намного больше, чем кальция и магния. Поэтому обычно всё нормально. Но если жесткость очень большая, более 30 мг/экв/л, то при этом процессе происходит превышение и по натрию. Накипи не будет, но пить такую воду нельзя. Тут-то и нужен обратный осмос, чтобы убрать избыток натрия - произвести умягчение воды.
Сегодня на российском рынке представлены и другие разновидности фильтров мембранно-сорбционного класса. Они состоят из мембранного блока и одного-двух блоков (в зависимости от производительности и ресурса) дополнительной очистки. Кроме того, уже очищенная и стабилизированная по солевому составу питьевая вода проходит финишное 6-12-кратное осветление на специальных волокнах и сорбентах. Подобное сочетание многочисленных методов очистки и осветления жидкой среды, известное среди специалистов под названием «шлифовка воды», позволило довести ресурс данных водоочистителей до 50000-75000 л.
Отечественной промышленностью выпускаются и компактные обратноосмотические фильтры, предназначенные для очистки воды в походных или экстремальных условиях. Их основное достоинство - универсальность и компактность, их всегда можно взять с собой и иметь возможность воспользоваться фильтром в любой момент. Это телескопические трубки по форме и размерам с обычную авторучку. Несмотря на миниатюрность, подобные аппараты способны надежно очистить 10 л воды от бактерий, вирусов, хлора, фенола и токсичных металлов.
Но, несмотря на свои достоинства, осмотические фильтры нравятся не всем. Главный аргумент: Что хорошего, когда вода идеально чистая? Ведь в ней нет микроэлементов. Отвечая на этот вопрос, одни производители говорят о том, что необходимые микроэлементы человек получает не из воды, а вместе с продуктами питания, ведь, чтобы удовлетворить ежедневную потребность, к примеру, в калии, нужно выпить 150 л воды, а в фосфоре - 1000 л; другие разрабатывают специальный минерализаторы, чтобы вода после очистки фильтром становилась не только чистой, но и «живой», т. е. полноценной для употребления. Такие установки имеют большой ресурс (4000 - 15000 л) и высокую скорость фильтрации (1,5-3 л/мин). Эти фильтры дорого стоят – от150 до 900$, а также требуют достаточно много места для установки.


Даже не открывайте

Фото посылки, пупырки, треков и прочей лабуды не будет. Почта работает! Все посылки ко мне в Москву доходят максимум за полтора месяца.


Недавно ко мне обратилась коллега с просьбой помочь/посмотреть купленный ОО-фильтр. Ее беспокоил постоянный шум под мойкой. Ответ я уже знал:(
Предыстория
Дело было лет семь назад.
Чтобы не покупать бутилированную воду (накладно получается) установил в офисе
Все бы хорошо, но где-то через месяц заметил, что система шумит постоянно, т.е. идет постоянный слив воды в канализацию, даже когда накопительный бак полон.
Стал разбираться, оказалось, что дело в злополучной мембране (иногда его еще называют краб, в упомянутом выше обзоре ТС ошибочно обозвал его автопереключателем)
Как только не пытался лечить: и скотч наклеивал, и велозаплатки. Не помогало.
Пришлось менять краб целиком, но через месяц опять мембрана порвалась. Собака Проблема была зарыта в высоком давлении воды в системе.
Вот тут-то и пришла в голову идея модернизации этого узла.
Сначала немного теории
Известно, что ОО-мембрана лучше всего работает при высоком давлении воды в системе (для этого и продаются модели с насосом). Если в системе давление менее 3атм, то вода просто не будет продавливаться через поры мембраны и будет утекать в канализацию.
Но если давление воды слишком высокое, то, как у меня в офисе и случилось, мембраны в клапане отсечки просто не выдержат.
Клапан работает по следующему принципу:
Пока накопительный бак пустой, давления в «магистрали чистой воды» нет. Но как только бак заполняется хотя бы наполовину, начинает работать (условно) верхняя бОльшая мембрана и через толкатель начинает давить на нижнюю малую мембрану «грязной магистрали» (вход фильтра), тем самым подзакрывая входящий поток. А как только бак заполняется, верхняя мембрана полностью прижимает нижнюю, перекрывающую входной поток.
Но с постепенным наполнением бака падает входное давление и, соответственно, эффективность работы фильтра.
Решено было убить двух зайцев сразу: и избавиться от проблемного «краба», и повысить эффективность работы /скорость наполнения/снизить расход воды.
Реализация
Убрал краб. Вместо него
a/ в чистую магистраль поставил .
b/ на вход системы в грязную магистраль поставил
с/ подключил в цепочку 220в-реле-ЭМклапан.
Докупил (для удобного размещения клапана) трубки и 4 пластиковых фитинга для реле и ЭМклапана.
Полученный результат удовлетворил полностью: Ничего не рвется, лишнее в канализацию не утекает, эффективная работа мембраны на протяжении всего процесса заполнения накопительного бака и скорость полного заполнения.
Единственный минус - нужно 220в.
Вернемся в настоящее время
Так как ответ на проблему я уже знал, то оставалось только найти запчасти для ремонта. У себя в городе не нашел поэтому, предупредив коллегу, что «не скоро дело делается», полез на eBay.
И нашел!
По параметрам на странице продавца:
Материал: Латунь
Питание: 220v
Тип: Нормально (т.е. без напряжения) закрытый
Мах давление: 1.0MPa (10атм)
Для воды
Также были закуплены (но уже в местных магазинах) , и
(Ссылки на eBay привожу для справки как искать, если в местных магазинах не найдете)

И еще несколько моментов из опыта эксплуатации таких систем:
1) Обязательно раз в год проводите тщательную проверку всей системы на наличие микротрещин, целостность прокладок и тп.
2) Года через 3-4 рекомендую заменить все три нижние пластиковые колбы (у меня два раза были случаи когда вырывало колбу вместе с резьбой, лопается верхняя часть). Электромагнитный клапан, если он установлен перед входом в систему, спасет вашу квартиру от потопа!
3) Электромагнитный клапан рекомендую ставить на вход первого грязевого фильтра (в большинстве систем краб установлен на отсечку между первым и вторым фильтром) См.п2!
4) UPD! Очень распространенная ошибка: «надуть» накопительный бак! Многие считают, что накачав, поднимут давление в фильтре. Да, поднимут, но не в фильтре, а в самом баке. В результате в бак будет фильтроваться меньше воды.
В накопительном баке встроена резиновая груша, которая разделяет воздух (нижняя часть) и чистую воду (верхняя часть). Поднимая давление в нижней части, вы уменьшаете полезное пространство в верхней части. На накопительном баке наклеена этикетка, где указано рабочее давление (100psi=6,9атм). Вот такое и нужно оставлять!
5) UPD! Еще одна распространенная ошибка: замена «краба» в надежде, что это поднимет давление. Любой новый «краб» (так он устроен) с постепенным наполнением накопительного бака ПОСТЕПЕННО снижает входной напор на фильтр. Предложенный мной вариант решает в том числе и эту проблему!
Проверить фильтр можно так:
Уберите из системы «краб» (соответственно нужно восстановить все подключения, нужны будут запасные трубки)
Перекройте накопительный бак
Включите воду. Посмотрите как вода вытекает из краника на мойке. Должна быть непрерывная струйка толщиной 1-2 мм.
Одновременно с этим можно этой чистой водой заполнить какую-нибудь емкость, а трубочку, которая идет в канализацию, засунуть в другую емкость. Так можно оценить примерный расход воды.
Если струйка очень тонкая или капает, то возможно забилась ОО-мембрана.
А возможно и действительно давление в водопроводе очень низкое. Но тут уж никакими настройками не вылечишь, только ставить . Но такой апгрейд достаточно накладен (примерно 4000руб: сам насос + реле высокого давления + реле низкого давления + фитинги и трубка).
Как вариант, отказаться от осмоса и поставить ультрафильтрационную мембрану. Ей требуется гораздо меньшее давление. Фильтрует несколько хуже. Она ставиться в тот же корпус, что и ОО-мембрана. И убирается накопительный бак и все обвязка ОО (обратный клапан, краб, ограничитель потока).

Обзор делать не планировал, писал на скорою руку

Если будут вопросы - рад подсказать.

Планирую купить +52 Добавить в избранное Обзор понравился +38 +78

Ниже представлены распространённые причины неисправностей и способы их устранения.

Вода из системы всё время сливается в канализацию

Чтобы удостовериться в этом, необходимо сначала перекрыть бак – повернуть рычаг под раковиной на 90 градусов по отношению к трубе. Если через полчаса вода также уходит в дренаж, нужно искать причины:

  • Для исправной работы системы требуется давление в 3-4 атмосфер. Если оно выше, то лучше приобрести редуктор, выравнивающий его. При слабом давлении следует поставить помпу.
  • Мембрана обратного осмоса в норме должна пропускать воду тонкой струйкой – не толще мизинца. В противном случае следует её заменить;
  • 4-х ходовой клапан прекращает поступление воды в бак, если кран закрыть. Когда этого не происходит – требуется новый клапан;
  • Обратный клапан системы должен препятствовать сливу воды при заполненном баке. Нуждается в замене, если не выполняет свою функцию.

Очищенная вода имеет неприятный привкус

Самая распространённая причина – застой воды в очистительных картриджах или в самом баке. В первом случае необходимо сливать перед использованием около 1 л воды либо использовать биокерамический картридж ежедневно.
Если же вкус воды всё равно неприятный, то вода застоялась в баке. Необходимо срочно заменить постугольный кардридж. Или полностью обновить воду в баке, что необходимо делать ежемесячно. Вообще, стоит рассчитывать предполагаемый расход воды – для двух человек достаточно бака объёмом 8 л.

Слабый напор воды из крана системы

Возможно, это связано с работой самого бака, потому что система очистки происходит медленно и для большого количества необходим резервуар. Если в баке нет воды, фильтр для воды обратный осмос работает впустую. Следует проверить, нет ли препятствий для подачи воды в бак, полностью открыть к нему кран. Если всё в норме, то неисправен сам бак.

Не набирается вода в пустой бак

Причина может быть в давлении, которое можно усилить с помощью помпы.

Не течёт вода при заполненном баке

Следует проверить исправность всех кранов – если всё в порядке, тогда давление внутри бака слишком низкое. Снаружи сбоку на самом баке имеется колпачок, под ним – ниппель для подачи воздуха. Можно таким образом подкачать давление до 1 атмосфер.

Медленно набирается вода из-под крана системы

Основные причины:

  • Подошёл срок замены фильтра – из-за сильного загрязнения вода через систему проходит слишком медленно;
  • Низкое давление подачи воды в систему. Опять-таки, нужно установить помпу.
  • Неисправна мембрана в системе;
  • Засор в отделах фильтрации после мембраны. Когда вода течёт нормально до мембраны, нужно прочистить все части фильтра после неё.

Основные критерии, которые стоит учитывать для исправной работы системы обратного осмоса

Для профилактики неисправностей системы перед установкой нужно учитывать важные аспекты:

  1. Жёсткость воды;
  2. Общая минерализация воды;
  3. Давление (3-4 атм);
  4. t ° воды при подаче (от 15 до 25 градусов)

Типовые случаи неисправной работы систем обратного осмоса Atoll и методы их устранения. Если не найдете ответ и решения проблемы в данной подборке, то смотрите инструкцию по эксплуатации для вашей модели или обращайтесь в сервисный центр "Русфильтр-Сервис" .


Вода в дренаж течет постоянно

Причина
  • Неисправен отсечной клапан
  • Засорены сменные элементы, повреждены префильтры
  • Низкое давление
Устранение

Для этого:

  1. Закройте кран на накопительном баке;
  2. Откройте кран чистой воды;
  3. Вы услышите, что вода выливается из дренажной трубки;
  4. Закройте кран чистой воды;
  5. Через несколько минут поток воды из дренажной трубки должен остановиться;
  6. Если поток не останавливается, замените отсечной клапан.
    • Заменить картриджи, включая, при необходимости, мембрану или поврежденные префильтры
    • Система без насоса требует входного давления минимум 2,8 атм. Если давление ниже указанного, то следует установить повышающий насос (см. раздел “Опции” в инструкции по эксплуатации)

Протечки

Причина
  • Края соединительных трубок отрезаны не под 90°, или край трубки имеет "задиры".
  • Не герметично подсоединены трубки
  • Резьбовые соединения не затянуты
  • Не хватает уплотнительных колец
  • Скачки давления во входном трубопроводе выше 6 атм
Устранение
  • При монтаже, демонтаже или смене фильтроэлементов - следить за тем, чтобы края соединительных трубок были ровные (обрезаны под прямым углом) и без шероховатостей и утончений.
  • Трубку вставить в коннектор до упора и приложить дополнительное усилие для герметизации соединения. Потяните трубки для проверки соединений.
  • При необходимости затяните резьбовые соединения.
  • Свяжитесь с поставщиком
  • Для предотвращения протечек рекомендуется установить в систему перед первым префильтром клапан понижения давления Honeywell D04 или D06, а также atoll Z-LV-FPV0101

Из крана вода не течет или капает, т.е. малая производительность

Причина
  • Низкое давление воды на входе в фильтр
  • Трубки перегнулись
  • Низкая температура воды
Устранение
  • Cистема без насоса требует входного давления минимум 2,8 атм. Если давление ниже указанного, то следует установить повышающий насос (см. раздел “Опции” в инструкции для эксплуатации к конкретной модели)
  • Проверьте трубки и устраните перегибы
  • Рабочая температура хол. воды = 4-40°С

В бак набирается не достаточное количество воды

Причина
  • Система только начала работу
  • Засорились префильтры или мембрана
  • Давление воздуха в баке высокое
  • Засорен обратный клапан в колбе мембраны
Устранение
  • Замените префильтры или мембрану
  • Замените ограничитель потока

Вода молочного цвета

Причина
  • Воздух в системе
Устранение
  • Воздух в системе - это норма в первые дни работы системы. Через одну-две недели он будет полностью выведен.

Вода имеет неприятный запах или привкус

Причина
Устранение
  • Замените угольный постфильтр
  • Замените мембрану
  • Опорожните бак и наполните снова (процедура может повторяться несколько раз)
  • Проверьте порядок подключения (см. схему подключения в инструкции к данному фильтру)

Вода не подается из бака в кран

Причина
  • Давление в баке ниже допустимого
  • Прорыв мембраны бака
  • Закрыт кран на баке
Устранение
  • Подкачайте воздух через воздушный клапан бака до необходимого давления (0,5 атм.) автомобильным или велосипедным насосом
  • Замените бак
  • Откройте кран на баке

Вода не поступает в дренаж

Причина
  • Засорился ограничитель потока воды в дренаж
Устранение
  • Замените ограничитель потока

Повышенный шум

Причина
  • Засорение дренажа
  • Высокое входное давление
Устранение
  • Найдите и устраните засорение
  • Установите клапан понижения давления.Отрегулируйте давление краном подачи воды

Насос не отключается

Причина
  • В бак не набирается достаточное количество воды.
  • Требуется регулировка датчика высокого давления.
Устранение
  • Бак наполняется в течение 1,5-2 часов.Низкие температура и входное давление снижают производительность мембраны. Возможно, надо просто подождать
  • Замените префильтры или мембрану
  • Проверьте давление в пустом накопительном баке через воздушный клапан с помощью манометра. Нормальное давление 0,4-0,5 атм. При недостаточном давлении подкачайте автомобильным или велосипедным насосом.
  • Замените ограничитель потока
  • Обратный клапан установлен на колбе мембраны внутри центрального соединителя, расположенного на стороне, противоположной крышке колбы. Выкрутите соединитель, промойте клапан под струей воды.
Если вода не поступает в дренаж, а насос не отключается, то поверните против часовой стрелки регулировочной шестигранник на датчике высокого давления.

Выражаем благодарность за помощь в подготовке этого материала к.т.н. Барасьеву Сергею Владимировичу, академику Белорусской инженерной академии.

Что это за примеси и откуда они берутся в воде?

Откуда берутся вредные примеси?

Вода, как известно, не только самое распространенное вещество в природе, но и универсальный растворитель. В воде обнаружено более 2000 природных веществ и элементов, из которых идентифицированы лишь 750, в основном, органические соединения. Однако вода содержит не только природные вещества, но и токсичные техногенные вещества. Они попадают в водные бассейны в результате промышленных выбросов, сельскохозяйственных стоков, бытовых отходов. Ежегодно в водные источники попадают тысячи химических веществ с непредсказуемым действием на окружающую среду, сотни из которых представляют собой новые химические соединения. В воде могут быть обнаружены повышенные концентрации токсичных ионов тяжелых металлов (например, кадмия, ртути, свинца, хрома), пестициды, нитраты и фосфаты, нефтепродукты, поверхностно-активные вещества. Ежегодно в моря и океаны попадает до 12млн. тонн нефти.


Определенный вклад в повышение концентрации тяжелых металлов в воде вносят и кислотные дожди в промышленно- развитых странах. Такие дожди способны растворять в грунте минералы и увеличивать содержание в воде токсичных ионов тяжелых металлов. В круговорот воды в природе вовлекаются и радиоактивные отходы с атомных электростанций. Сброс в водные источники неочищенных сточных вод приводит к микробиологической загрязненности воды. По оценкам Всемирной организации здравоохранения 80% заболеваний в мире вызваны низким качеством и антисанитарным состоянием воды. Особенно остро проблема качества воды стоит в сельской местности – примерно 90% всех сельских жителей в мире постоянно пользуются для питья и купания загрязненной водой.

Существуют ли стандарты на питьевую воду?

Разве стандарты на питьевую воду не защищают население?

Нормативные рекомендации складываются в результате экспертной оценки, основывающейся на нескольких факторах – анализе данных о распространенности и концентрации веществ, обычно обнаруживаемых в питьевой воде; возможностях очистки от этих веществ; научно обоснованных выводах о влиянии загрязняющих веществ на живой организм. Что касается последнего фактора, то он имеет некоторую неопределенность, поскольку экспериментальные данные переносятся с мелких животных на человека, затем линейно (а это условное допущение) экстраполируются с больших доз вредных веществ на малые, затем вводится «коэффициент запаса» - полученный результат по концентрации вредного вещества делится обычно на 100.


Кроме того, существует неопределенность, связанная с неконтролируемым поступлением в воду техногенных примесей и отсутствием данных о поступлении дополнительных количеств вредных веществ из воздуха и продуктов питания. Относительно влияния канцерогенных и мутагенных веществ большинство ученых считают их воздействие на организм беспороговым, т. е. достаточно одной молекуле такого вещества попасть на соответствующий рецептор, чтобы вызвать заболевание. Реально рекомендуемые величины таких веществ допускают один случай заболевания по причине воды на 100 000 населения. Далее, в нормативах на питьевую воду приводится очень ограниченный перечень подлежащих контролю веществ и вовсе не учитывается вирусная инфекция. И, наконец, совершенно не учитываются особенности организма различных людей (что принципиально невозможно). Таким образом, нормативы на питьевую воду отражают, по существу, экономические возможности государств

Если питьевая вода соответствует принятым стандартам, зачем ее доочищать?

По ряду причин. Во-первых, формирование стандартов на питьевую воду исходит из экспертной оценки, основывающейся на нескольких факторах, которые зачастую не учитывают техногенного загрязнения воды и имеют некоторую неопределенность в обосновании выводов о концентрациях загрязняющих веществ, влияющих на живой организм. В результате, рекомендации Всемирной организации здравоохранения допускают, например, одно заболевание раком на сто тысяч населения из-за воды. Поэтому специалисты ВОЗ уже на первых страницах «Руководства по контролю качества питьевой воды» (Женева, ВОЗ) заявляют, что «несмотря на то, что рекомендуемые величины предусматривают качество воды, приемлемой для потребления в течение всей жизни, это не означает, что качество питьевой воды может быть снижено до рекомендуемого уровня. В действительности же необходимы постоянные усилия по поддержанию качества питьевой воды на наиболее высоком возможном уровне…а уровень воздействия токсичных веществ должен быть как можно более низким.». Во-вторых, возможности государств в этом плане (стоимость очистки, распределения и мониторинга воды) ограничены, да и здравый смысл подсказывает, что неразумно доводить до совершенства всю подаваемую в дома для хозяйственно-питьевых нужд воду, тем более что на питьевые цели расходуется примерно один процент от всей используемой воды. В-третьих, случается, что усилия по очистке воды на водоочистных сооружениях нейтрализуются из-за технических нарушений, аварий, подпитки загрязненных вод, вторичного трубного загрязнения. Так что принцип «защити себя сам» весьма актуален.

Как бороться с присутствием хлора в воде?

Если хлорирование воды опасно, зачем его используют?

Хлор выполняет полезную функцию стража в отношении бактерий и обладает пролонгированным действием, но играет и негативную роль – при наличии определенных органических веществ образует канцерогенные и мутагенные хлорорганические соединения. Здесь важно выбрать наименьшее из зол. В критических ситуациях и при технических сбоях возможны передозировки хлора (гиперхлорирование), и тогда хлор, как токсичное вещество, и его соединения, становятся опасными. В США проводились исследования по влиянию хлорированной питьевой воды на родовые дефекты. Было установлено, что высокий уровень тетрахлорметана вызывал малый вес, гибель плода или дефекты центральной нервной системы, а бензол и 1,2-дихлорэтан – сердечные дефекты.


С другой стороны, интересен и показателен такой факт – строительство бесхлорных (на основе связанного хлора) очистных систем в Японии привело к снижению затрат на медицину в три раза, и на десять лет к увеличению продолжительности жизни. Поскольку полностью отказаться от применения хлора не представляется возможным, выход видится в применении связанного хлора (гипохлоритов, диоксидов), что позволяет на порядок уменьшить побочные вредные соединения хлора. Учитывая также невысокую эффективность хлора в отношении вирусного инфицирования воды, целесообразно применять ультрафиолетовое обеззараживание воды (разумеется там, где это экономически и технически оправдано, т.к. ультрафиолет не обладает пролонгированным действием).


В быту для удаления хлора и его соединений можно использовать угольные фильтры.

Насколько серьезна проблема присутствия тяжелых металлов в питьевой воде?

Что касается тяжелых металлов (ТМ), то большинство из них обладает высокой биологической активностью. В процессе водоподготовки в обработанной воде могут появиться новые примеси (например, на этапе коагуляции может появиться токсичный алюминий). Авторы монографии «Тяжелые металлы во внешней среде» отмечают, что «согласно прогнозам и оценкам в будущем они (тяжелые металлы) могут стать более опасными загрязнителями, чем отходы атомных электростанций и органические вещества». «Металлический прессинг» может стать серьезной проблемой в связи с тотальным влиянием тяжелых металлов на организм человека. Хронические интоксикации ТМ имеют выраженное нейротоксическое действие, а также существенно влияют на эндокринную систему, кровь, сердце, сосуды, почки, печень, на процессы обмена. Воздействуют они и на репродуктивную функцию человека. Некоторые металлы обладают аллергенным действием (хром, никель, кобальт), могут приводить к мутагенным и канцерогенным последствиям (соединения хрома, никеля, железа). Облегчает положение пока, в большинстве случаев, невысокая концентрация тяжелых металлов в подземной воде. Более вероятно присутствие тяжелых металлов в воде из поверхностных источников, а также появление их в воде в результате вторичного загрязнения. Наиболее эффективный способ удаления ТМ – использование фильтрующих систем на основе обратного осмоса.

С древних времен считалось, что вода после контакта с серебряными предметами становится безопасной для питья и даже полезной.

Почему же серебрение воды не используется сегодня повсеместно?

Использование серебра в качестве обеззараживающего агента не получило широкого распространения по ряду причин. Прежде всего, согласно СанПиН 10-124 РБ99, основывающихся на рекомендациях ВОЗ, серебро как тяжелый металл, наряду со свинцом, кадмием, кобальтом и мышьяком относится к классу опасности 2 (высокоопасное вещество), вызывая при длительном употреблении заболевание аргироз. По данным ВОЗ естественное суммарное потребление серебра с водой и пищей составляет около 7 мкг/сутки, предельно допустимая концентрация в питьевой воде – 50 мкг/л, бактериостатический эффект (подавление роста и размножения бактерий) достигается при концентрации ионов серебра около 100 мкг/л, а бактерицидный (уничтожение бактерий) – свыше 150 мкг/л. При этом нет надежных данных о жизненно важной для организма человека функции серебра. Более того, серебро недостаточно эффективно в отношении спорообразующих микроорганизмов, вирусов и простейших и требует длительного контакта с водой. Поэтому специалисты ВОЗ считают, например, что использование фильтров на основе активированного угля, импрегнированного серебром, «допускается исключительно для питьевой воды, о которой известно, что она безопасна в микробиологическом отношении».

Чаще же всего серебрение воды используется в случаях длительного хранения обеззараженной питьевой воды в герметичной таре без доступа света (в некоторых авиакомпаниях, на морских судах и т.п.), и для обеззараживания воды в бассейнах (в сочетании с медью), позволяя снижать степень хлорирования (но не полностью от него отказываться).

Правда ли, что пить воду, умягченную фильтрами очистки воды, вредно для здоровья?

Жесткость воды обусловлена, в основном, присутствием в ней растворенных солей кальция и магния. Гидрокарбонаты этих металлов неустойчивы и со временем преобразуются в нерастворимые в воде карбонатные соединения, выпадающие в осадок. Этот процесс ускоряется при нагревании, образуя твердый белый налет на поверхностях нагревательных приборов (всем известная накипь в чайниках), а кипяченая вода становится более мягкой. При этом из воды удаляются кальций и магний – элементы необходимые для организма человека.

С другой стороны, человек получает различные вещества и элементы и с продуктами питания, причем с продуктами питания в большей степени. Потребность организма человека в кальции - 0,8?1,0 г, в магнии – 0,35?0,5 г в сутки, а содержание этих элементов в воде средней жесткости составляет 0,06?0,08 г и 0,036?0,048 г, соответственно, т.е. примерно 8?10 процентов суточной потребности и менее для более мягкой или кипяченой воды. В тоже время соли жесткости вызывают высокую мутность и першение в горле от чая, кофе и других напитков из-за содержания плавающего на поверхности и в объеме напитка осадка, затрудняют варку пищевых продуктов.

Таким образом, вопрос заключается в определении приоритетов – что лучше: пить воду из-под крана или качественно очищенную после фильтра (тем более, что некоторые фильтры практически не влияют на исходную концентрацию кальция и магния).

С точки зрения санитарных врачей вода должна быть безопасной для употребления, вкусной и стабильной. Поскольку бытовые фильтры очистки воды практически не меняют индекс стабильности воды, имеют возможность подключения минерализаторов и устройств УФ- обеззараживания воды, то они обеспечивают чистую и вкусную холодную и умягченную (на 50/90%) для приготовления пищи и горячих напитков воду.

Что дает магнитная обработка воды?

Вода - удивительное вещество в природе, меняющее свои свойства не только в зависимости от химического состава, но и при воздействии различных физических факторов. В частности, экспериментально было обнаружено, что даже кратковременное воздействие магнитного поля увеличивает скорость кристаллизации растворенных в ней веществ, коагуляции примесей и выпадения их в осадок.


Сущность этих явлений до конца не выяснена, и в теоретическом описании процессов воздействия магнитного поля на воду и растворенные в ней примеси сосуществуют, в основном, три группы гипотез (по Классену): - «коллоидная», в которой предполагается, что магнитное поле разрушает содержащиеся в воде коллоидные частицы, остатки которых образуют центры кристаллизации примесей, ускоряющие выпадение их в осадок; - «ионная», согласно которой воздействие магнитного поля приводит к усилению гидратных оболочек ионов примеси, затрудняющих сближение ионов и их конгломерацию; - «водяная», сторонники которой считают, что магнитное поле вызывает деформацию структуры ассоциированных с помощью водородных связей молекул воды, влияя таким образом на скорость протекающих в воде физико-химических процессов. Как бы там ни было, обработка воды магнитным полем нашла широкое практическое применение.


Ее используют для подавления накипеобразования в котлах, на нефтепромыслах для устранения осаждения минеральных солей в трубопроводах и парафинов в нефтепроводах, для снижения мутности природной воды на водопроводных станциях и обработки сточных вод в результате быстрого осаждения мелкодисперсных загрязнений. В сельском хозяйстве магнитная вода заметно повышает урожай, в медицине находит применение при удалении почечных камней.

Какие методы обеззараживания воды применяются на практике в настоящее время?

Все известные технологические методы обеззараживания воды можно разделить на две группы – физические и химические. К первой группе относятся такие методы обеззараживания, как кавитация, пропускание электрического тока, радиационное (гамма-кванты или рентген) и ультрафиолетовое (УФ) облучение воды. Вторая группа способов обеззараживания основана на обработке воды химическими веществами (например, перекисью водорода, перманганатом калия, ионами серебра и меди, бромом, йодом, хлором, озоном), при определенных дозах оказывающих бактерицидный эффект. В силу ряда обстоятельств (недостаточность практических разработок, дороговизна внедрения и (или) эксплуатации, побочные эффекты, избирательности воздействия активного агента) реально на практике применяют, в основном, хлорирование, озонирование и УФ-облучение. При выборе конкретной технологии учитываются гигиенические, эксплуатационно-технические и экономические аспекты.


В общем, если касаться недостатков того или иного метода, можно отметить, что: - хлорирование наименее эффективно в отношении вирусов, вызывает образование канцерогенных и мутагенных хлорорганических соединений, требуются специальные меры к материалам оборудования и условиям работы обслуживающего персонала, имеется опасность передозировки, существует зависимость от температуры, pH и химического состава воды; - озонирование характеризуется образованием токсичных побочных продуктов (броматы, альдегиды, кетоны, фенолы и др.), опасностью передозировки, возможностью повторного роста бактерий, необходимостью удаления остаточного озона, сложным комплексом оборудования (включая высоковольтное), использованием нержавеющих материалов, высокими строительными и эксплуатационными расходами; - применение УФ-облучения требует качественной предварительной подготовки воды, отсутствует эффект пролонгации обеззараживающего действия.

Какими параметрами характеризуются установки УФ-обеззараживания воды?

За последние годы практический интерес к методу УФ-облучения с целью обеззараживания питьевых и сточных вод значительно возрос. Это связано с рядом несомненных достоинств метода, таких как высокая эффективность инактивации бактерий и вирусов, простота технологии, отсутствие побочных эффектов и влияния на химический состав воды, низкие эксплуатационные расходы. Разработка и применение в качестве излучателей ртутных ламп низкого давления позволило повысить КПД до 40% по сравнению с лампами высокого давления (КПД 8%), снизить на порядок единичную мощность излучения, одновременно увеличив в несколько раз срок службы УФ-излучателей и предотвратив сколь нибудь значительное образование озона.


Важным параметром установки УФ-облучения является доза облучения и неразрывно связанный с ней коэффициент поглощения водой УФ-излучения. Доза облучения – это плотность энергии УФ-облучения в мДж/см2, полученной водой за время ее протекания через установку. Коэффициент поглощения учитывает ослабление УФ-излучения при прохождении толщи воды за счет эффектов поглощения и рассеяния и определяется как отношение доли поглощенного потока излучения при прохождении слоя воды толщиной 1см к его начальному значению в процентах.


Величина коэффициента поглощения зависит от мутности, цветности воды, содержания в ней железа, марганца и для соответствующей принятым стандартам воды находится в диапазоне 5 – 30%/см. Выбор установки УФ- облучения должен учитывать тип инактивируемых бактерий, спор, вирусов, так как их стойкость к облучению сильно различается. Например, для инактивации (при эффективности 99,9%) бактерий группы кишечной палочки требуется 7 мДж/см2, вируса полиомиелита - 21, яиц нематоды - 92, холерного вибриона – 9. В мировой практике минимальная эффективная доза облучения варьируется от 16 до 40 мДж/см2.

Вреден ли медный и оцинкованный водопровод для здоровья?

Медь и цинк по СанПиН 10-124 РБ 99 относятся к тяжелым металлам с классом опасности 3 - опасные. С другой стороны, медь и цинк необходимы для метаболизма организма человека и считаются нетоксичными в обычно встречающихся в воде концентрациях. Очевидно, что как избыток, так и дефицит микроэлементов (а к ним относится и медь и цинк) может вызывать различные нарушения в деятельности органов человека.


Медь входит составной частью в ряд ферментов, утилизирующих белки, углеводы, повышает активность инсулина, и просто необходима для синтеза гемоглобина. Цинк входит в состав ряда ферментов, обеспечивающих окислительно-восстановительные процессы и дыхание, а также необходим для выработки инсулина. Аккумуляция меди происходит, в основном, в печени и частично в почках. Превышение ее естественного содержания в этих органах примерно на два порядка приводит к некрозу клеток печени и канальцев почек.


Недостаток меди в рационе питания может вызывать врожденные уродства. Суточная доза для взрослого человека составляет не менее 2мг. Недостаток цинка приводит к снижению функции половых желез и гипофиза мозга, к замедлению роста детей и анемии, снижению иммунитета. Суточная доза цинка – 10- 15мг. Избыток цинка вызывает мутагенные изменения в клетках тканей органов, повреждает клеточные мембраны. Медь в чистом виде практически не взаимодействует с водой, но на практике ее концентрация несколько увеличивается в водопроводных сетях из медных труб (аналогично увеличивается концентрация цинка в оцинкованном водопроводе).


Присутствие меди в системе водоснабжения не считается опасным для здоровья, но может негативно сказываться на использовании воды в бытовых целях – увеличивать коррозию гальванизированной и стальной арматуры, придавать окраску воде и горький привкус (в концентрациях выше 5мг/л), вызывать окрашивание тканей (в концентрациях выше 1мг/л). Именно с бытовой точки зрения величина ПДК меди устанавливается равной 1,0 мг/л. Для цинка величина ПДК в питьевой воде 5,0мг/л определена с эстетических позиций с учетом представлений о привкусе, поскольку при более высоких концентрациях вода имеет вяжущий привкус и может опалесцировать.

Не вредно ли пить минеральную воду с высоким содержанием фтора

В последнее время в продаже появилось много минеральной воды с высоким содержанием фтора.

Не вредно ли ее постоянно пить?

Фтор относится к веществам с санитарно-токсикологическим показателем вредности с классом опасности 2. Этот элемент естественным образом содержится в воде в различных, как правило, невысоких концентрациях, а также в ряде продуктов питания (например, в рисе, чае) также в небольших концентрациях. Фтор – один из необходимых микроэлементов для организма человека, поскольку участвует в биохимических процессах, воздействующих на весь организм. Входя в состав костей, зубов, ногтей фтор оказывает благоприятное воздействие на их структуру. Известно, что недостаток фтора приводит к кариесу зубов, от которого страдает больше половины населения планеты.


В отличие от тяжелых металлов, фтор эффективно выводится из организма, поэтому важно иметь источник его регулярного возобновления. Содержание фтора в питьевых водах менее 0,3 мг/л позволяет говорить о его дефиците. Однако уже при концентрациях 1,5 мг/л отмечаются случаи крапчатости зубов; при 3,0?6,0 мг/л может наблюдаться флюороз скелета, а при концентрациях выше 10 мг/л может развиться инвалидизирующий флюороз. Рекомендованный ВОЗ на основании этих данных уровень содержания фтора в питьевой воде принимается равным 1,5 мг/л. Для стран с жарким климатом или для большего потребления питьевой воды этот уровень снижен до 1,2 и даже до 0,7мг/л. Таким образом, фтор гигиенически полезен в узком диапазоне концентраций примерно от 1,0 до 1,5 мг/л.


Поскольку фторирование питьевой воды централизованного водоснабжения нецелесообразно, производители бутилированной воды прибегают к наиболее рациональному улучшению ее качества, путем искусственного фторирования в гигиенически допустимых пределах. Содержание фтора в бутилированной воде в концентрации выше 1,5 мг/л должно говорить о его естественном происхождении, но такая вода может быть отнесена к лечебным и не предназначена для постоянного употребления.

Побочные эффекты хлорирования. Почему не предлагается никакой альтернативы?

В последнее время в научно-практических кругах в области водоподготовки на конференциях, симпозиумах довольно активно обсуждается вопрос об эффективности того или иного метода обеззараживания воды. Существует три наиболее распространенных метода инактивации воды - хлорирование, озонирование и ультрафиолетовое (УФ)-облучение. Каждый из этих методов имеет определенные недостатки, не позволяющие полностью отказаться от других методов обеззараживания воды в пользу какого-либо выбранного. Наиболее предпочтительным с технико-эксплуатационных, экономических и медицинских позиций мог бы выступить метод УФ-облучения, если бы не отсутствие продленного обеззараживающего действия. С другой стороны, совершенствование метода хлорирования на основе связанного хлора (в виде диоксида, гипохлорита натрия или кальция) позволяет существенно снизить один из отрицательных побочных эффектов хлорирования, а именно – в пять-десять раз уменьшить концентрацию канцерогенных и мутагенных хлорорганических соединений.

Все же остается нерешенной проблема вирусного загрязнения воды – эффективность хлора в отношении вирусов, как известно, невысокая, и даже гиперхлорирование (при всех его минусах) не в состоянии справиться с задачей полной дезинфекции обрабатываемой воды, в особенности, при высокой концентрации органических примесей в обрабатываемой воде. Вывод напрашивается сам собой – использовать принцип сочетательности методов, когда методы взаимно дополняют друг друга, в комплексе решая поставленную задачу. В рассматриваемом случае последовательное применение методов УФ-облучения и дозированный ввод в обрабатываемую воду связанного хлора наиболее эффективно отвечают основному назначению системы обеззараживания – полной инактивации объекта дезинфекционной обработки с пролонгированным последействием. Дополнительный бонус в тандеме УФ- связанный хлор – это возможность снижения мощности УФ-облучения и доз хлорирования по сравнению с используемыми при раздельном применении вышеуказанных методов, что дает дополнительный экономический эффект. Предлагаемое сочетание методов обеззараживания не является единственно возможным на сегодняшний день и работы в этом направлении обнадеживают.

Насколько опасно употреблять воду для питья c неприятным вкусом, запахом и мутноватую на вид?

Иногда водопроводная вода имеет неприятный вкус, запах и мутновата на вид. Насколько опасно употреблять такую воду для питья?

Согласно принятой терминологии, названные выше свойства воды относятся к органолептическим показателям и включают запах, привкус, цветность и мутность воды. Запах воды, в основном, связан с присутствием органических веществ (естественного или промышленного происхождения), хлора и хлорорганических соединений, сероводорода, аммиака или деятельностью бактерий (необязательно патогенных). Неприятный привкус вызывает наибольшее количество жалоб потребителей. К веществам, влияющим на этот показатель, относятся магний, кальций, натрий, медь, железо, цинк, бикарбонаты (например, жесткость воды), хлориды и сульфаты. Цветность воды обусловлена присутствием окрашенных органических веществ, например, гуминовых веществ, водорослей, железа, марганца, меди, алюминия (в сочетании с железом), или окрашенных промышленных загрязняющих отходов. Мутность вызвана наличием в воде мелкодисперсных взвешенных частиц (глинистых, илистых компонентов, коллоидного железа и др.).

Мутность приводит к снижению эффективности обеззараживания и стимулирует рост бактерий. Хотя вещества, влияющие на эстетические и органолептические показатели, редко присутствуют в токсически опасных концентрациях, следует определять причину неприятных ощущений (чаще опасность представляют вещества, не определяемые органами чувств человека) и обеспечивать концентрацию веществ, вызывающих неприятные ощущения, значительно ниже порогового уровня. В качестве допустимой концентрации веществ, влияющих на эстетические и органолептические показатели, принимается концентрация в 10 (для органических веществ) и более раз ниже пороговой.

По данным специалистов ВОЗ, около 5% людей могут ощущать привкус или запах некоторых веществ при концентрациях в 100 раз ниже пороговой. Однако чрезмерные усилия по полному устранению веществ, влияющих на органолептические показатели, в масштабах населенных пунктов могут оказаться неоправданно дорогостоящими и даже невозможными. В этой ситуации целесообразно использовать правильно подобранные фильтры и системы доочистки питьевой воды.

В чем вредность нитратов и как избавиться от них в питьевой воде?

Соединения азота присутствуют в воде, в основном, поверхностных источников, в виде нитратов и нитритов и относятся к веществам с санитарно-токсикологическим показателем вредности. Согласно СанПиН 10-124 РБ99 ПДК нитратов по NO3 составляет 45мг/л (класс опасности 3), а нитритов по NO2 – 3мг/л (класс опасности 2). Избыточное содержание этих веществ в воде может вызывать кислородное голодание за счет образования метгемоглобина (форма гемоглобина, в которой железо гема окислено до Fe(III), не способного переносить кислород), а также заболевания некоторыми формами рака. Наиболее подвержены метгемоглобинемии грудные дети и новорожденные. Вопрос очистки питьевой воды от нитратов наиболее остро стоит для сельских жителей, поскольку широкое использование нитратных удобрений приводит к накоплению их в почве, а затем, как следствие, и в реках, озерах, колодцах и неглубоких скважинах. Удалить нитраты и нитриты из питьевой воды на сегодняшний день можно двумя методами – на основе обратного осмоса и на основе ионного обмена. К сожалению, сорбционный метод (с использованием активированных углей) как наиболее доступный характеризуется низкой эффективностью.

Метод обратного осмоса обладает чрезвычайно высокой эффективностью, однако следует учитывать его дороговизну и тотальное обессоливание воды. Для приготовления воды для питьевых нужд в небольших количествах все же следует считать его наиболее подходящим способом очистки воды от нитратов, тем более что существует возможность подключения дополнительной ступени с минерализатором. Метод ионного обмена на практике реализуется в установках с сильноосновным анионитом в Cl-форме. Процесс удаления растворенных соединений азота заключается в замещении ионов Cl- на анионообменной смоле на ионы NO3- из воды. Однако при этом в реакции обмена участвуют и анионы SO4- , HCO3-, Cl-, причем анионы сульфатов с большей эффективностью, чем анионы нитратов и емкость по нитрат-ионам оказывается невысокой. При реализации этого метода дополнительно следует учесть ограничение суммарной концентрации сульфатов, хлоридов, нитратов и бикарбонатов величиной ПДК по хлорид-ионам. Для преодоления этих недостатков разработаны и предлагаются специальные селективные анионообменные смолы, сродство которых по отношению к нитрат-ионам наиболее высокое.

Присутствуют ли радионуклиды в питьевой воде и насколько серьезно их следует воспринимать?

Радионуклиды могут оказаться в источнике воды, используемой человеком, по причине естественного присутствия радионуклидов в земной коре, а также вследствие техногенной деятельности человека – при испытаниях ядерного оружия, недостаточной очистке сточных вод предприятий атомной энергетики и промышленности или авариях на этих предприятиях, утерях или хищениях радиоактивных материалов, добыче и переработке нефти, газа, руд и др. Учитывая реальность такого рода загрязнения вод в нормативы на питьевую воду вводятся требования по ее радиационной безопасности, а именно – общая?-радиоактивность (поток ядер гелия) не должна превышать 0,1 Бк/л, а общая?-радиоактивность (поток электронов) не выше 1,0 Бк/л (1Бк соответствует одному распаду в секунду). Основной вклад в радиационное облучение человека на сегодняшний день вносит естественная радиация – до 65-70%, ионизирующие источники в медицине – больше 30%, остальная доза облучения приходится на созданные человеком источники радиоактивности – до 1,5% (по данным А.Г. Зеленкова). В свою очередь, существенная доля в фоне естественной внешней радиации приходится на?-радиоактивный радон Rn-222. Радон представляет собой инертный радиоактивный газ, в 7,5 раза тяжелее воздуха, бесцветный, не имеющий вкуса и запаха, содержащийся в земной коре и обладающий высокой растворимостью в воде. В среду обитания человека радон попадает со строительными материалами, в виде просочившегося из недр земли на ее поверхность газа, при сжигании природного газа, а также с водой (в особенности, если она подается из артезианских скважин).

В случае недостаточного воздухообмена в домах и отдельных помещениях в доме (как правило, в подвалах и нижних этажах) затрудняется рассеяние радона в атмосфере и его концентрация может превысить предельно допустимую в десятки раз. Например, в коттеджах с водоснабжением из собственной скважины радон может выделяться из воды при пользовании душем или кухонным краном, и его концентрация в кухне или ванной может в 30-40 раз превышать концентрацию в жилых помещениях. Наибольший вред от облучения наносится от радионуклидов, попадающих внутрь организма человека при вдыхании, а также с водой (не менее 5% в общей дозе радоновой радиации). При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких и по вероятности этого заболевания радон стоит на втором месте в ряду причинности после курения (по данным Службы Общественного Здоровья США). В этой ситуации можно порекомендовать отстаивание воды, аэрацию, кипячение или использование угольных фильтров (эффективность> 99%), а также умягчителей на ионообменных смолах.

В последнее время все чаще говорят о пользе селена и даже выпускают питьевую воду с селеном; в тоже время известно, что селен ядовит. Хотелось бы знать, как определить норму его потребления?

Действительно, селен и все его соединения токсичны для человека выше определенных концентраций. Согласно СанПиН 10-124 РБ99 селен относится к веществам с санитарно-токсикологическим показателем вредности с классом опасности 2. В тоже время селен играет ключевую роль в деятельности организма человека. Это биологически активный микроэлемент, входящий в состав большинства (более 30) гормонов и ферментов и обеспечивающий нормальное функционирование организма и его защитные и репродуктивные функции. Селен является единственным из микроэлементов, встраивание которого в ферменты кодируется в ДНК. Биологическая роль селена связана с его антиоксидантными свойствами (наряду с витаминами А, С и Е), обусловленными участием селена в построении, в частности, одного из важнейших антиоксидантных ферментов – глутатион-пероксидазы (от 30 до 60% всего селена в организме).

Дефицит селена (ниже средней суточной потребности организма человека 160мкг) ведет к снижению защитной функции организма от свободно-радикальных окислителей, необратимо повреждающих клеточные мембраны и, как следствие, к болезням (сердечным, легочным, щитовидной железы и др.), ослаблению иммунной системы, преждевременному старению и уменьшению продолжительности жизни. Учитывая все вышесказанное, следует придерживаться оптимального количества потребления селена суммарно с пищей (в основном) и водой. Рекомендованное специалистами ВОЗ максимальное суточное потребление селена с питьевой водой не должно превышать 10% от рекомендованного максимального суточного потребления селена с пищей 200 мкг. Таким образом, при потреблении в день 2л питьевой воды концентрация селена не должна превышать 10 мкг/л, и эта величина принята в качестве ПДК. В действительности территории многих стран относятся к селенодефицитным (Канада, США, Австралия, Германия, Франция, Китай, Финляндия, Россия и др.), а интенсивное земледелие, эрозия почвы и кислотные дожди усугубляют ситуацию, уменьшая содержание селена в почве. В результате люди все меньше потребляют этого необходимого элемента с естественной белковой и растительной пищей, и все большая потребность возникает в пищевых добавках или специальной бутилированной воде (в особенности после 45-50лет). В заключение можно отметить лидеров по содержанию селена среди продуктов: кокос (0,81 мкг), фисташки (0,45 мкг), свиное сало (0,2-0,4 мкг), чеснок (0,2-0,4 мкг), морская рыба (0,02-0,2мкг), пшеничные отруби (0,11мкг), белые грибы (0,1 мкг), яйца (0,07-0,1 мкг).

Существует дешевый «народный» способ улучшить качество воды настаиванием ее на кремне. Действительно ли этот способ так эффективен?

Для начала следует уточнить терминологию. Кремень – минеральное образование на основе оксида кремния, состоящее из кварца и халцедона с окрашивающими примесями металлов. В лечебных целях пропагандируют, по-видимому, разновидность кремнезема – диатомит, органогенного происхождения. Кремний – химический элемент, занимающий в природе второе после кислорода место по распространенности (29,5%) и образующий в природе свои основные минеральные вещества – кремнезем и силикаты. Главным источником соединений кремния в природных водах являются процессы химического растворения кремнесодержащих минералов, поступления в природные воды отмирающих растительных и микроорганизмов, а также поступления со сточными водами предприятий, использующих в производстве кремнийсодержащие вещества. В слабощелочных и нейтральных водах присутствует, как правило, в виде недиссоциированной кремнекислоты. Вследствие низкой растворимости среднее её содержание в подземных водах составляет 10 - 30 мг/л, в поверхностных – от 1 до 20 мг/л. Только в сильнощелочных водах кремнекислота мигрирует в ионной форме, в связи с чем её концентрация в щелочных водах может достигать сотен мг/л. Если не касаться уверений некоторых ярых сторонников этого способа доочистки питьевой воды о придании воде, контактирующей с кремнем, неких сверхъестественных целебных свойств, то вопрос сводится к выяснению факта сорбции кремнем «вредных» примесей и выделении «полезных» примесей в динамическом равновесии с окружающей кремень водой. Такие исследования в действительности проводились и более того, этому вопросу посвящались научные конференции.

В целом, если отвлечься от несовпадений результатов исследований разных авторов, связанных с различиями образцов (все-таки надо учитывать невоспроизводимость свойств природных минералов) и условий экспериментов, были подтверждены сорбционные качества кремня в отношении радионуклидов и ионов тяжелых металлов, связывание микобактерий на коллоидах кремния (например, по данным М.Г. Воронкова, Иркутский институт органической химии), а также факт выделения в контактную воду кремния в виде кремниевых кислот. Что касается последнего, то этот факт привлек исследователей к более пристальному изучению роли кремния как микроэлемента в деятельности органов человека, поскольку бытовало мнение о биологической бесполезности соединений кремния. Оказалось, что кремний стимулирует рост волос и ногтей, входит в состав коллагеновых волокон, нейтрализует токсичный алюминий, играет важную роль в срастании костей при переломах, необходим для поддержания эластичности артерий и играет важную роль в профилактике атеросклероза. В то же время известно, что в отношении микроэлементов (в отличие от макроэлементов) допустимы мизерные отклонения от биологически оправданных доз потребления и не следует увлекаться постоянным излишним потреблением кремния из питьевой воды в концентрациях выше предельно допустимых - 10мг/л.

Нужен ли кислород в питьевой воде?

Действие кислорода, растворенного в воде в виде молекул O2, сводится, в основном, к влиянию на окислительно-восстановительные реакции с участием катионов металлов (например, железа, меди, марганца), азот- и серосодержащих анионов, органических соединений. Поэтому при определении стабильности воды и ее органолептических качеств, наряду с измерением концентрации органических и неорганических веществ, водородного показателя pH, важно знать и концентрацию кислорода (в мг/л) в этой воде. Вода подземных источников, как правило, чрезвычайно обеднена кислородом, и поглощение кислорода воздуха в процессе ее добычи и транспортировки в водораспределительных сетях сопровождается нарушением исходного анионно-катионного баланса, приводящего, например, к выпадению в осадок железа, изменению pH воды, образованию комплексных ионов. С подобными явлениями часто приходится сталкиваться производителям минеральной и питьевой бутилированной воды, добываемой с больших глубин. В воде поверхностных источников содержание кислорода сильно варьируется в зависимости от концентрации различных органических и неорганических веществ, а также присутствия микроорганизмов. Баланс кислорода определяется равновесием процессов, приводящих к поступлению кислорода в воду, и его потреблению. Увеличению содержания кислорода в воде способствуют процессы поглощения кислорода из атмосферы, выделение кислорода водной растительностью в процессе фотосинтеза, подпитка поверхностных источников насыщенными кислородом дождевыми и талыми водами. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. В подземных источниках небольшое содержание кислорода может быть вызвано вертикальной тепловой конвекцией. Уменьшают же концентрацию кислорода в воде поверхностных источников процессы химического окисления веществ (нитритов, метана, аммония, гумусовых веществ, органических и неорганических отходов в сточных водах антропогенного происхождения), биологического (дыхание организмов) и биохимического потребления (дыхание бактерий, расход кислорода при разложении органических веществ).

Скорость потребления кислорода увеличивается с повышением температуры и количества бактерий. Количественная характеристика химического потребления кислорода основана на понятии окисляемости - количестве кислорода в мг, израсходованного на окисление органических и неорганических веществ, содержащихся в 1л воды (т.н. перманганатная окисляемость для слабозагрязненных вод, и бихроматная окисляемость (или ХПК- химическое потребление кислорода). Биохимическое потребление кислорода (БПК, мг/л) рассматривают в качестве меры загрязнения воды и определяют как разность содержания кислорода в воде до и после ее выдерживания в темноте в течение 5 суток при 20оС. Практически чистой считается вода с БПК не выше 30мг/л. Хотя специалисты ВОЗ не приводят количественной характеристики кислорода в питьевой воде, тем не менее они рекомендуют «… поддерживать максимально близкие к уровню насыщения концентрации растворенного кислорода, что в свою очередь требует, чтобы концентрации биологически окисляющихся веществ… были по возможности более низкими». С технической точки зрения насыщенная кислородом вода проявляет коррозионноактивные свойства к металлу и бетону, что нежелательно. Компромиссным считается степень насыщения (относительное содержание кислорода в процентах к его равновесному содержанию) 75% (или в эквиваленте от 7 летом до 11 зимой мг О2/л).

В питьевой воде водородный показатель по санитарным нормам должен быть от 6 до 9, а в некоторых безалкогольных напитках бывает 3-4. Какова роль этого показателя и не вредно ли пить напитки с таким низким значением водородного показателя?

В рекомендациях ВОЗ значение водородного показателя находится в еще более узких пределах 6,5-8,5, но это обусловлено определенными соображениями. Водородный показатель представляет собой величину, характеризующую концентрацию ионов водорода H+ (гидроксония H3O+) в воде или в водных растворах. Поскольку эта величина, выраженная в г-ионах на литр водного раствора, чрезвычайно мала, принято определять ее как отрицательный десятичный логарифм концентрации водородных ионов и обозначать символом pH. В чистой воде (или нейтральном растворе) при 250С водородный показатель равен 7 и отражает равенство ионов H+ и OH- (гидроксильная группа) как составных частей молекулы воды. В водных растворах в зависимости от соотношения H+/OH- водородный показатель может изменяться в пределах от 1 до 14. При величине pH меньше 7 концентрация ионов водорода превышает концентрацию ионов гидроксила и вода имеет кислую реакцию; при pH больше 7 имеет место обратное соотношение между H+ и OH- и вода имеет щелочную реакцию. Наличие различных примесей в воде влияет на величину pH, обусловливая скорости и направления химических реакций. В природных водах на величину водородного показателя существенным образом влияет соотношение концентраций диоксида углерода CO2, угольной кислоты, карбонатных и гидрокарбонатных ионов. Наличие в воде гумусовых (почвенных) кислот, угольной кислоты, фульвокислот (и других органических кислот в результате разложения органических веществ) понижает водородный показатель до значений 3,0 – 6,5. Содержащие бикарбонаты кальция и магния подземные воды характеризуются величиной pH, близкой к нейтральной. Заметное присутствие в воде карбонатов и бикарбонатов натрия повышает водородный показатель до значений 8,5-9,5. Величина pH воды рек, озер, подземных вод обычно находится в пределах 6,5-8,5, атмосферных осадков 4,6-6,1, болот 5,5-6,0, морских вод 7,9-8,3, а желудочного сока – 1,6-1,8! Технологические требования к воде для производства водки предусматривают величину pH < 7,8, для производства пива – 6,0-6,5, безалкогольных напитков – 3,0-6,0. Поэтому в рекомендациях ВОЗ фактором ограничения pH служит не влияние этого показателя на здоровье человека, а технические аспекты использования воды с кислой или щелочной реакцией. При pH < 7 вода может вызывать коррозию металлических труб и бетона, и тем сильнее, чем ниже pH. При pH > 8 снижается эффективность процесса обеззараживания хлором и создаются условия для выпадения в осадок солей жесткости. В результате специалисты ВОЗ приходят к выводу, что «в отсутствие системы водораспределения допустимый диапазон значений pH может быть более широким», чем рекомендованный 6,5-8,5. Следует заметить, что при определении диапазона pH не принимались во внимание заболевания желудочно-кишечного тракта человека.

Что означает понятие «стабильная вода»?

В общем случае стабильной называют воду, не вызывающую коррозии металлических и бетонных поверхностей и не выделяющую на эти поверхности осадков карбоната кальция. Определяется стабильность как разность между водородным показателем рН раствора и его равновесным значением рНS (индекс Ланжелье): если водородный показатель оказывается меньше равновесного, вода становится коррозионно-активной, если больше равновесного – выпадают в осадок карбонаты кальция и магния. В природных водах стабильность воды определяется соотношением между диоксидом углерода, щелочностью и карбонатной жесткостью воды, температурой, давлением углекислого газа в окружающем воздухе. При этом процессы установления равновесия протекают самопроизвольно и сопровождаются либо выпадением в осадок карбонатов, либо их растворением. Соотношение между диоксидом углерода, гидрокарбонатными и карбонатными ионами (производные угольной кислоты) в значительной мере определяется величиной рН. При рН ниже 4.5 из всех компонентов карбонатного равновесия в воде присутствует только диоксид углерода CO2, при рН=8,3 практически вся угольная кислота присутствует в виде гидрокарбонатных ионов, а при рН 12 в воде находятся только карбонатные ионы. При использовании воды в коммунальном хозяйстве, в промышленности чрезвычайно важно учитывать фактор стабильности. Для поддержания стабильности воды регулируют водородный показатель, щелочность или карбонатную жесткость. Если вода оказывается коррозионно-активной (например, при обессоливании, умягчении), то перед подачей в линию потребления ее следует обогатить карбонатами кальция или провести подщелачивание; если, напротив, вода склонна к выделению карбонатных осадков, требуется их удаление или подкисление воды. Для стабилизационной обработки воды используются такие физические методы, как магнитная и радиочастотная обработка воды, препятствующая выпадению солей жесткости на поверхностях теплообменников, внутренних поверхностях трубопроводов. Химическая обработка заключается во введении с помощью дозаторов специальных реагентов на основе фосфатных соединений, препятствующих осаждению на нагретых поверхностях солей жесткости за счет их связывания, коррекции pH дозацией кислот или пропусканием воды через гранулированные материалы типа доломита (Corosex, Calcite, жженый доломит), дозацией различных комплексонов на основе производных фосфоновой кислоты, ингибирующих процессы кристаллизации карбонатов солей жесткости и коррозии углеродистых сталей. Для получения заданных параметров и концентраций примесей воды применяют кондиционирование воды. Кондиционирование воды осуществляется комплексом оборудования очистки воды, ее стабилизации и дозирования необходимых веществ, например, кислот для уменьшения щелочности, фтора, йода, минеральных солей (например, коррекция содержания кальция при производстве пива).

Не вредно ли пользоваться алюминиевой посудой, если содержание алюминия в питьевой воде ограничивается санитарными нормативами?

Алюминий – один из самых распространенных элементов в земной коре – его содержание составляет 8,8% от массы земной коры. Чистый алюминий легко окисляется, покрываясь защитной оксидной пленкой и образует сотни минералов (алюмосиликаты, бокситы, алуниты и др.) и алюминийорганические соединения, частичное растворение которых природной водой и обусловливает присутствие алюминия в подземных и поверхностных водах в ионной, коллоидной форме и в виде взвесей. Этот металл нашел применение в авиации, электротехнике, пищевой и легкой промышленности, металлургии и др. Стоки и атмосферные выбросы промышленных предприятий, использование соединений алюминия в качестве коагулянтов в муниципальной водоподготовке повышают его естественное содержание в воде. Концентрация алюминия в поверхностных водах составляет 0,001 – 0,1 мг/дм3, а при низких значениях pH может достигать нескольких граммов на дм3. С технической стороны, превышение концентрации 0,1 мг/дм3 может вызывать изменение окраски воды, в особенности, в присутствии железа, а при уровнях содержания выше 0,2 мг/дм3 могут выпадать хлопья гидрохлорида алюминия. Поэтому в качестве ПДК специалисты ВОЗ рекомендуют значение 0,2 мг/дм3. Соединения алюминия при поступлении в организм здорового человека практически не оказывают токсичное действие из-за низкой всасываемости, хотя использование содержащей соединения алюминия воды для почечного диализа вызывает неврологические нарушения у получающих лечение больных. Некоторые специалисты в результате исследований приходят к выводу о токсичности ионов алюминия для человека, проявляющейся во влиянии на обмен веществ, функционирование нервной системы, размножение и рост клеток, вывод кальция из организма. С другой стороны, алюминий повышает активность ферментов, способствует ускорению заживления кожи. В организм человека алюминий попадает, в основном, с растительной пищей; на долю воды приходится менее 10 % от общего количества поступившего алюминия. Несколько процентов от общего поступления алюминия обеспечивают другие источники – атмосферный воздух, лекарства, алюминиевая посуда и тара и др. Академик Вернадский считал, что все естественные элементы, входящие в состав земной коры, в той или иной степени должны присутствовать в организме человека. Поскольку алюминий относится к микроэлементам, его суточное потребление должно быть небольшим и находиться в узких пределах допустимого. По оценкам экспертов ВОЗ суточное потребление может достигать 60 – 90 мг, хотя реальное обычно не превышает 30 -50 мг. СанПиН 10-124 РБ99 относит алюминий к веществам с санитарно-токсикологическим показателем вредности с классом опасности 2 и ограничивает предельно допустимую концентрацию величиной 0,5 мг/дм3.

Иногда в воде чувствуется затхлый или удушливый запах. С чем он связан и как от него избавиться?

При использовании некоторых поверхностных или подземных источников водоснабжения в воде может присутствовать неприятный запах, вызывающий отказ потребителей от использования такой воды и жалобы в органы санэпидемнадзора. Появление затхлого запаха в воде может иметь разные причины и природу возникновения. Разлагающиеся мертвые растения и белковые соединения могут придавать воде поверхностного источника гнилостный, травяной и даже рыбный запах. Сточные воды промышленных предприятий – нефтеперерабатывающих заводов, комбинатов по производству минеральных удобрений, пищевых комбинатов, химических и металлургических заводов, городская канализация могут обусловливать появление запахов химических соединений (фенолы, амины), сероводорода. Иногда запах возникает в самой системе водораспределения, имеющей в конструкции тупиковые ветви, накопительные емкости (что создает возможность застаивания), и вызван деятельностью плесневых грибков или сернистых бактерий. Чаще всего, запах связан с присутствием в воде сероводорода H2S (характерный запах тухлых яиц) или (и) аммония NH4. В подземных водах сероводород в заметных концентрациях обязан дефициту кислорода, а в поверхностных водах, как правило, обнаруживается в придонных слоях, где затруднена аэрация и перемешивание водных масс. Восстановительные процессы бактериального разложения и биохимического окисления органических веществ вызывают рост концентрации сероводорода. Сероводород в природных водах находится в виде молекулярного H2S, ионов гидросульфида HS- и реже - ионов сульфида S2-, не имеющих запаха. Соотношение между концентрациями этих форм определяется значениями рН воды: сульфид – ион в заметной концентрации можно обнаружить при рН > 10; при рН<7 содержание H2S преобладает, а при рН=4 сероводород почти полностью находится в виде H2S. Аэрация в сочетании с коррекцией рН позволяет полностью избавиться от сероводорода при промышленном производстве бутилированной воды из подземных источников; в быту можно использовать угольные фильтры. Хотя специалисты ВОЗ не устанавливают рекомендуемой величины по причине легкого обнаружения даже следовых концентраций, следует считать ПДК сероводорода равной нулю. Основными источниками поступления ионов аммония в водные объекты являются животноводческие фермы, хозяйственно-бытовые сточные воды (до 2-7 мг/ дм3), поверхностный сток с сельскохозяйственных полей при использовании аммонийных удобрений, а также сточные воды предприятий пищевой, коксохимической, лесохимической и химической промышленности (до 1 мг/дм3). В незагрязненных поверхностных водах образование ионов аммония связано с процессами биохимического разложения белковых веществ. ПДК (с санитарно-токсикологическим показателем вредности) в воде водоемов хозяйственно - питьевого и культурно-бытового водопользования не должна превышать 2 мг/дм3 по азоту.

Действительно ли кобальт обладает антиканцерогенным действием и какие его количества допустимы для употребления без вреда, но с пользой?

Кобальт – химический элемент, тяжелый металл серебристо-белого цвета с красноватым оттенком. Кобальт - биологически активный элемент, входящий в состав витамина B12, постоянно присутствующий во всех живых организмах – растениях и животных. Как любой микроэлемент, кобальт полезен и безопасен в узком диапазоне суточных доз 0,1 – 0,2 мг при постоянном поступлении в организм человека суммарно с пищей и водой. В повышенных концентрациях кобальт токсичен. Поэтому важно знать и контролировать его содержание в питьевой воде. Недостаток кобальта вызывает малокровие, нарушение функций центральной нервной системы, снижение аппетита. Угнетающее воздействие кобальта на дыхание клеток злокачественных опухолей подавляет их размножение. Кроме того, этот элемент способствует повышению противомикробных свойств пенициллина в 2-4 раза.

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН. Растворенные формы представлены в основном комплексными соединениями, в том числе с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта. В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм3, среднее содержание в морской воде - 0,5 мкг/дм3. Наибольшая концентрация кобальта обнаружена в таких продуктах, как говядина и телячья печень, виноград, редис, салат, шпинат, свежий огурец, черная смородина, клюква, лук. Согласно СанПиН 10-124 РБ99 кобальт относится к токсичным тяжелым металлам с санитарно-токсикологическим показателем вредности с классом опасности 2 и предельно допустимой концентрацией 0,1 мг/дм3.

При использовании воды из собственной скважины появляются черно-серые мелкие крупинки. Не вредно ли пить такую воду?

Для точного «диагноза» необходим химический анализ воды, но из опыта можно предположить, что «виновник» таких неприятностей – марганец, часто сопутствующий железу в подземных водах. Даже при концентрациях 0,05 мг/дм3, что в два раза ниже предельно допустимой, марганец может откладываться в виде налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. В поверхностные воды природный марганец поступает в результате выщелачивания минералов, содержащих марганец (пиролюзит, манганит и др.), а также в процессе разложения водных организмов и растений. Соединения марганца попадают в водоемы со сточными водами металлургических заводов, предприятий химической промышленности. В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных - сотни и тысячи мкг/дм3. В природных водах марганец мигрирует в различных формах - ионной (в поверхностных водах происходит переход в высоковалентные оксиды, выпадающие в осадок), коллоидной, комплексных соединений с бикарбонатами и сульфатами, комплексных соединений с органическими веществами (аминами, органическими кислотами, аминокислотами и гумусовыми веществами), сорбированных соединений, в виде марганецсодержащих взвесей вымытых водами минералов. Формы и баланс содержания марганца в воде определяется температурой, pH,содержанием кислорода, поглощением и выделением его водными организмами, подземными стоками. С физиологической точки зрения марганец относится к полезным и даже жизненно необходимым микроэлементом, активно влияя на процессы обмена белков, жиров и углеводов в организме человека. В присутствии марганца происходит боле полное усвоение жиров. Этот элемент необходим для большого числа ферментов, поддерживает определенный уровень холестерина в крови, а также способствует усилению действия инсулина. После поступления в кровь марганец проникает в эритроциты, вступает в комплексные соединения с белками и активно адсорбируется различными тканями и органами, такими как печень, почки, поджелудочная железа, стенки кишечника, волосы, железы внутренней секреции. Наиболее важное значение в биологических системах имеют катионы марганца в состоянии окисления 2+ и 3+. Несмотря на то, что ткани мозга поглощают марганец в меньших количествах, основной токсический эффект при избыточном его потреблении проявляется в поражении центральной нервной системы. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов, способствует утилизации CO2 растениями, чем повышает интенсивность фотосинтеза и т.д. Суточная потребность человека в этом элементе - от 5 до 10мг – обеспечивается, в основном, продуктами питания, среди которых доминируют различные крупы (особенно овсяная, гречневая, пшеничная, кукурузная и др.), бобовые, говяжья печень. При концентрациях 0,15 мг/дм3 и выше марганец может окрашивать белье и придавать неприятный привкус напиткам. Предельно допустимая концентрация 0,1 мг/дм3 устанавливается с позиций его красящих свойств. Марганец, в зависимости от ионной формы, можно удалить методами аэрации с последующим фильтрованием (при pH > 8,5), каталитическим окислением, ионным обменом, обратным осмосом или дистилляцией.

Процессы растворения различных горных пород (минералы галит, мирабилит, магматические и осадочные породы и др.) являются основным источником поступления натрия в природные воды. Кроме того, натрий поступает в поверхностные воды в результате естественных биологических процессов в открытых водоемах и реках, а также с промышленными, бытовыми и сельскохозяйственными сточными водами. На концентрацию натрия в воде конкретного региона, помимо гидрогеологических условий, вида промышленности, влияет и время года. Концентрация его в питьевой воде обычно не превышает 50 мг/дм3; в речных водах колеблется от 0,6 до 300 мг/дм3 и даже более 1000 мг/дм3 в местностях с засоленными почвами (для калия не более 20 мг/дм3), в подземных – может достигать нескольких граммов и десятков граммов в 1дм3 на больших глубинах (для калия – аналогично). Уровни натрия выше 50 мг/дм3 вплоть до 200 мг/дм3 могут быть также получены в результате водоподготовки, особенно в процессе натрий – катионитного умягчения. Высокое потребление натрия, согласно многочисленным данным, действительно играет заметную роль в развитии гипертонии у генетически чувствительных людей. Однако суточное потребление натрия с питьевой водой даже при повышенных концентрациях оказывается, как показывает простой расчет, в 15 - 30 раз ниже, чем с пищей, и не может вызывать существенный дополнительный эффект. Тем не менее, лицам, страдающим гипертензией или сердечной недостаточностью, когда требуется ограничить потребление натрия суммарно с водой и пищей, но желающим использовать мягкую воду, можно рекомендовать калий – катионитное умягчение. Калий имеет важное значение в поддержании автоматизма сокращения сердечной мышцы, калиево-натриевый «насос» поддерживает оптимальный содержание жидкости в организме. В сутки человеку необходимо 3,5 г калия и основной его источник – пища (сушеные абрикосы, инжир, цитрусы, картофель, орехи и др.). СанПиН 10-124 99 ограничивает содержание натрия в питьевой воде величиной ПДК 200 мг/дм3; по калию ограничения не приводятся.

Что такое диоксины?

Диоксины - обобщенное название большой группы полихлорированных искусственных органических соединений (полихлордибензопарадиоксинов (ПХДЦ), полихлордибензодифуранов (ПХДФ) и полихлордибифенилов (ПХДФ). Диоксины представляют собой твердые бесцветные кристаллические вещества с температурой плавления 320-325°С, химически инертные и термостабильные (температура разложения выше 750°С). Появляются в качестве побочных продуктов при синтезе некоторых гербицидов, при производстве бумаги с использованием хлора, производстве пластмасс, в химической промышленности, образуются при сжигании отходов в мусоросжигательных заводах. При попадании в окружающую среду поглощаются растениями, почвой и различными материалами, попадают через цепи питания в организмы животных и в, особенности, рыб. Атмосферные явления (ветры, дожди) способствуют распространению диоксинов и образованию новых очагов загрязнения. В природе распадаются крайне медленно (более10 лет), что обусловливает их накопление и долговременное воздействие на живые организмы. При попадании в организм человека с пищей или водой диоксины поражают иммунную систему, печень, легкие, вызывают заболевания раком, генетические мутации половых клеток и клеток эмбриона, причем период проявления их действия может составлять месяцы и даже годы. Признаками поражения диоксинами являются снижение веса, потеря аппетита, появление угреобразной сыпи на лице и шее, не поддающейся лечению, ороговение и нарушение пигментации (потемнение) кожи. Развивается поражение век. Наступают крайняя депрессия и сонливость. В дальнейшем поражение диоксинами приводит к нарушениям функции нервной системы, обмена веществ, изменению состава крови. Больше всего диоксинов содержится в мясе (0,5 – 0,6пг/г), рыбе (0,26 – 0,31 пг/г) и молочных продуктах (0,1 – 0,29 пг/г), причем в жире этих продуктов диоксинов накапливается в несколько раз больше (по данным З.К. Амировой и Н.А. Клюева), а в овощах, фруктах и крупах практически не обнаруживаются.. Диоксины – одни из самых токсичных синтетических соединений. Допустимая суточная доза (ДСД) составляет не более 10 пг/кг веса человека в день (в США – 6фг/кг), а это говорит о том, что диоксины в миллион раз токсичнее таких тяжелых металлов как мышьяк и кадмий. Принятая у нас ПДК в воде 20пг/дм3 позволяет предполагать, что при надлежащем контроле санитарными службами и суточным потреблением воды не более 2,5л получить отравление диоксинами, содержащимися в воде, нам не грозит.

Какие опасные органические соединения могут быть в питьевой воде?

Среди естественных природных органических веществ, встречающихся в поверхностных источниках водоснабжения – реках, озерах, в особенности, в болотистых местностях, - гуминовые и фульвокислоты, органические кислоты (муравьиная, уксусная, пропионовая, бензойная, масляная, молочная), метан, фенолы, азотсодержащие вещества (амины, мочевина, нитробензолы и др.), серосодержащие вещества (диметилсульфид, диметилдисульфид, метилмеркаптан и др.), карбонильные соединения (альдегиды, кетоны и др.), жиры, углеводы, смолистые вещества (выделяемые хвойными породами деревьев), дубильные вещества (или танниды – фенолсодержащие вещества), лигнины (высокомолекулярные вещества, вырабатываемые растениями). Эти вещества образуются как продукты жизнедеятельности и распада растительных и животных организмов, некоторые попадают в воду в результате ее контакта с залежами углеводородов (нефтепродуктов). Хозяйственная деятельность человечества вызывает загрязнение водных бассейнов веществами, аналогичными природным, а также тысячами искусственно созданных химических веществ, многократно повышая концентрацию нежелательных органических примесей в воде. Помимо этого, дополнительное загрязнение в питьевую воду вносят материалы водораспределительных сетей, а также хлорирование воды в целях обеззараживания (хлор относится к числу активных окислителей и охотно вступает в реакции с различными органическими соединениями) и коагулянтами на стадии первичной водоочистки. Эти примеси включают различные группы веществ, способных оказывать влияние на здоровье: - загрязняющие источник водоснабжения гуминовые вещества, нефтепродукты, фенолы, синтетические детергенты (СПАВ), пестициды, четыреххлористый углерод CCl4, эфиры фталевой кислоты, бензол, полициклические ароматические углеводороды (ПАУ), полихлорированные бифенилы (ПХБ), хлорбензолы, хлорированные фенолы, хлорированные алканы и алкены, - поступающие на стадиях очистки четыреххлористый углерод (тетрахлорметан) CCl4, тригалометаны (хлороформ (трихлорметан) CHCl3, бромдихлорметан, дибромхлорметан, трибромметан(бромоформ)), акриламид, - поступающие в процессе водораспределения мономеры винилхлорида, ПАУ. Если концентрация естественных органических веществ в незагрязненных и слабозагрязненных природных водах не превышает обычно десятков и сотен мкг/дм3, то в водах загрязненных стоками их концентрация (а также спектр) значительно увеличена и может достигать десятков и сотен тысяч мкг/дм3.

Определенная часть органических веществ небезопасна для организма человека и их содержание в питьевой воде жестко нормируется. К особо опасным (класс опасности 2 и 1) относят вещества с санитарно-токсикологическим признаком вредности, вызывающие выраженное негативное воздействие на различные органы и системы человека, а также обладающие канцерогенным и (или) мутагенным действиями. К числу последних относятся углеводороды типа 3,4-бензапирена (ПДК 0,005 мкг/дм3), бензол (ПДК 10 мкг/дм3), формальдегид (ПДК 50 мкг/дм3), 1,2-дихлорэтан (ПДК 10 мкг/дм3), трихлорметан (ПДК 30 мкг/дм3), тетрахлорметан (ПДК 6 мкг/дм3), 1,1-дихлорэтилен (ПДК 0,3 мкг/дм3), трихлорэтилен (ПДК 30 мкг/дм3), тетрахлорэтилен (ПДК 10 мкг/дм3), ДДТ (сумма изомеров) (ПДК 2 мкг/дм3), альдрин и дильдрин (ПДК 0,03 мкг/дм3), ?-ГХЦГ (линдан) (ПДК 2 мкг/дм3), 2,4 – Д(дихлорфеноксиуксусная кислота) (ПДК 30 мкг/дм3), гексахлорбензол (ПДК 0,01 мкг/дм3), гептахлор (ПДК 0,1 мкг/дм3) и целый ряд других хлорорганических веществ. Эффективное удаление этих веществ достигается с помощью угольных фильтров или систем обратного осмоса. На муниципальных станциях водоподготовки необходимо обеспечить удаление органических веществ из воды перед хлорированием, либо выбрать альтернативные использованию свободного хлора способы обеззараживания воды. В СанПин 10-124 РБ99 количество органических веществ, для которых введены ПДК, достигает 1471.

Не вредно ли использовать для питья воду, обработанную полифосфатами?

Фосфор и его соединения чрезвычайно широко используются в промышленности, в коммунальном и сельском хозяйстве, медицине и т.д. В основном производится фосфорная кислота и на ее основе фосфорные удобрения и технические соли - фосфаты. В пищевой промышленности, например, фосфорная кислота применяется для регулирования кислотности желеобразных продуктов и безалкогольных напитков, в виде добавок фосфатов кальция в хлебобулочные изделия, для повышенного удержания воды в некоторых пищевых продуктах, в медицине - для производства лекарств, в металлургии – в качестве раскислителя и легирующей добавки в сплавы, в химической промышленности – для производства обезжиривающих и синтетических моющих средств на основе триполифосфата натрия, в коммунальном хозяйстве - для предотвращения накипеобразования за счет добавок полифосфатов в обрабатываемую воду. Общий фосфор P, существующий в окружающей человека среде, складывается из минерального и органического фосфора. Среднее массовое содержание в земной коре составляет 9,3х10-2%, в основном, в горных и осадочных породах. За счет интенсивного обмена между минеральными и органическими формами, а также живыми организмами, фосфор образует крупные месторождения апатитов и фосфоритов. Процессы выветривания и растворения фосфорсодержащих пород, естественные биопроцессы обусловливают содержание в воде общего фосфора (как минерального H2PO4- при pH< 6,5 и HPO42- pH> 6,5, так и органического) и фосфатов в концентрации от единиц до сотен мкг/дм3 (в растворенном виде или в виде частиц) для незагрязненных природных вод. В результате загрязнения водных бассейнов сельскохозяйственными (с полей 0,4-0,6кг P с 1га, с ферм - 0.01-0.05 кг/сут. на одно животное), промышленными и бытовыми (0.003-0.006 кг/сут. на одного жителя) стоками концентрация общего фосфора может существенно повышаться – вплоть до 10 мг/дм3, приводя зачастую к процессам эвтрофикации водоемов. Фосфор – один из важнейших биогенных элементов, необходимых для жизнедеятельности всех организмов. В клетках содержится в виде орто- и пирофосфорной кислот и их производных, входит в состав фосфолипидов, нуклеиновых кислот, аденазинтрифосфорной (АТФ) кислоты и др. органических соединений, влияющих на процессы обмена веществ, хранение генетической информации, аккумулирование энергии. Фосфор в организме человека содержится преимущественно в костной ткани (до 80%) в концентрации 5г% (на 100г сухого вещества), и обмен фосфора, кальция и магния тесно связан. Недостаток фосфора приводит разрежению костной ткани, повышению ее ломкости. В тканях мозга фосфора около 4г%, а в мышцах - 0,25г%. Суточная потребность организма человека в фосфоре – 1,0 -1,5г (большая потребность у детей). Наиболее богатые фосфором продукты – молоко, творог, сыры, яичный желток, грецкие орехи, горох, фасоль, рис, курага, мясо. Наибольшую опасность для человека представляет элементарный фосфор – белый и красный (основные аллотропные модификации), вызывающий тяжелейшие системные отравления и нейротоксические расстройства. Нормативные документы, в частности, СанПиН 10-124 РБ 99 устанавливают ПДК элементарного фосфора 0,0001 мг/дм3по санитарно-токсикологическому признаку с 1 классом опасности (чрезвычайно опасные). Что касается полифосфатов Men(PO3)n , Men+2PnO3n+1 , MenH2PnO3n+1, то они малотоксичны, в особенности гексаметафосфат, применяемый для квазиумягчения питьевой воды. Установленная для них допустимая концентрация составляет 3,5 мг/дм3 (по PO43-) с лимитирующим показателем вредности по органолептическому признаку.

Клапаны, загрязненные подобным образом, иногда возвращают как "неисправные". Возникает также ситуация, когда клапаны возвращают без видимых признаков неисправности; однако если второй клапан в том же месте снова "теряет герметичность", можно быть уверенным, что это вызвано наличием обводного канала в системе, т.е. возникновением нежелательного гидравлического канала между трубопроводом высокого давления и той частью системы, где давление понижено.

Наиболее часто обводной канал возникает между неконтролируемой системой холодного водоснабжения и системой подвода горячей воды пониженного давления, где клапан с понижением давления установлен на впуске в резервуар горячей воды.

Где-то в системе трубопроводы холодного и горячего водоснабжения оказываются замкнуты один с другим. Это может быть центральный смеситель термостата, но чаще это выпускная арматура, такая как смесители с одинарным выпуском смесители раковин, смесители термостата ванны или душа и т.д. Для предотвращения обводного канала между трубопроводами холодной и горячей воды, например, в смесителях термостатов, на впуски холодной и горячей воды устанавливают обратные клапаны.

Если обратный клапан, установленный в месте присоединения горячей воды, не работает на отсекание должным образом, то давление из системы холодной воды может беспрепятственно передаваться в трубопровод горячей воды. Если давление холодной воды превышает рабочее или выше давления, на которое рассчитан предохранительный клапан водогрейного устройства, то это будет приводить к постоянному подтеканию предохранительного клапана.

В некоторых случаях такая ситуация может возникать только в течение ночи, когда низкое потребление воды из водопровода приводит к повышению статического давления. Однако в большинстве случаев манометр на трубопроводе непосредственно перед клапаном с понижением давления показывает повышенное давление по причине того, что обратный клапан за клапаном с понижением давления редко закрывается полностью.

Как бы то ни было, клапан с понижением давления остается закрытым до тех пор, пока выходное давление сохраняется выше установленного. Таким образом клапан работает как полностью отсекающий обратный клапан. Более того, клапаны с понижением давления серии D06F сконструированы таким образом, что все детали выпускной части выдерживают давление, равное максимально допустимому впускному давлению, причем работоспособность клапана не нарушается.

В случае, когда клапан с понижением давления расположен в центральной точке непосредственно за водяным счетчиком, описанная проблема не возникает, так как системы трубопроводов холодной и горячей воды находятся под одинаковым давлением. Однако одно единственное ответвление перед клапаном с понижением давления, например, в гараж или в сад, может вызвать такую неисправность в системе с центрально расположенным клапаном с понижением давления.

Для полноты картины следует также отметить, что там, где отдельный клапан с понижением давления установлен для контроля резервуара с горячей водой, расширение воды при нагреве может вызвать увеличение давления сверх установленного уровня, и вплоть до давления срабатывания предохранительного клапана. Это может произойти и в случае центрально установленных клапанов с понижением давления, что приведет к возникновению описанного выше обводного канала в направлении, обратном потоку воды.

2.Вставьте ее в коннектор до упора.

Трубка закреплена механическим зажимом. Для герметизации соединения приложите дополнительное усилие. При этом трубка утопится еще на 3 мм и будет плотно обжата резиновым кольцом коннектора.

Трубка закреплена. Слегка потяните трубки для проверки соединения.

Перед разъединением убедитесь, что в системе отсутствует давление.

Отсоединить не менее просто.

1.Нажмите на колечко у основания, - механический зажим освободит трубку.

2.Вытяните трубку.



mob_info